The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

TAT fusion proteins containing tyrosine 42- deleted IkappaBalpha arrest osteoclastogenesis.

In most circumstances, NF-kappaB, which is essential for osteoclastogenesis, is activated following serine 32/36 phosphorylation of its cytosolic inhibitory protein, IkappaBalpha. In contrast to other cell types, IkappaBalpha, in bone marrow macrophages (BMMs), which are osteoclast precursors, is tyrosine-phosphorylated by c-Src kinase. To address the role of IkappaBalpha phosphorylation in osteoclastogenesis, we generated TAT fusion proteins containing wild-type IkappaBalpha (TAT-WT-IkappaB), IkappaBalpha lacking its NH(2)-terminal 45 amino acids (TAT-IkappaB(46-317)), and IkappaBalpha in which tyrosine residue 42, the c-Src target, is mutated into phenylalanine (TAT-IkappaB(Y42F)). TAT-IkappaB efficiently enters BMMs, and the NF-kappaB-inhibitory protein, once intracellular, is functional. While TAT-WT-IkappaB only slightly inhibits osteoclastogenesis, osteoclast recruitment is diminished >80% by TAT-IkappaB(46-317), an event mirrored by dentin resorption. The fact that TAT alone does not impact osteoclastogenesis, which also resumes following withdrawal of TAT-IkappaB(46-317), establishes that the mutant's anti-osteoclastogenic properties do not reflect toxicity. Affirming a functional role for IkappaB(Tyr(42)) in osteoclastogenesis, TAT-IkappaB(Y42F) is as efficient as TAT-IkappaB(46-317) in blocking osteoclast differentiation. Thus, dominant-negative IkappaBalpha constructs block osteoclastogenesis, and Tyr(42) is essential to the process, increasing the possibility that nonphosphorylatable forms of IkappaBalpha may be a means of preventing pathological bone loss.[1]

References

  1. TAT fusion proteins containing tyrosine 42-deleted IkappaBalpha arrest osteoclastogenesis. Abu-Amer, Y., Dowdy, S.F., Ross, F.P., Clohisy, J.C., Teitelbaum, S.L. J. Biol. Chem. (2001) [Pubmed]
 
WikiGenes - Universities