The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Chromosomal localization, structure, single-nucleotide polymorphisms, and expression of the human H-protein gene of the glycine cleavage system (GCSH), a candidate gene for nonketotic hyperglycinemia.

Nonketotic hyperglycinemia (NKH) is an inborn error of metabolism caused by deficiency in the glycine cleavage system ( GCS); this system consists of four individual constituents, P-, T-, H-, and L-proteins. Several mutations have been identified in P- and T-protein genes, but not in the H-protein gene (GCSH), despite the presence of case reports of H-protein deficiency. To facilitate the mutational and functional analyses of GCSH, we isolated and characterized a human p1-derived artificial chromosome (PAC) clone encoding GCSH. GCSH spanned 13.5kb and consisted of five exons. Using the PAC clone as a probe, we mapped GCSH to chromosome 16q24 by fluorescence in situ hybridization. The transcription initiation site was determined by the oligonucleotide-cap method, and potential binding sites for several transcriptional factors were found in the 5' upstream region. Direct sequencing analysis revealed five single-nucleotide polymorphisms. The expression profiles of P-, T-, and H-protein mRNAs were studied by dot-blot analysis, using total RNA from various human tissues. GCSH was expressed in all 29 tissues examined, while T-protein mRNA was detected in 27 of the 29 tissues. In contrast, the P-protein gene was expressed in a limited number of tissues, such as liver, kidney, brain, pituitary gland, and thyroid gland, suggesting distinct transcriptional regulation of each GCS constituent.[1]

References

  1. Chromosomal localization, structure, single-nucleotide polymorphisms, and expression of the human H-protein gene of the glycine cleavage system (GCSH), a candidate gene for nonketotic hyperglycinemia. Kure, S., Kojima, K., Kudo, T., Kanno, K., Aoki, Y., Suzuki, Y., Shinka, T., Sakata, Y., Narisawa, K., Matsubara, Y. J. Hum. Genet. (2001) [Pubmed]
 
WikiGenes - Universities