The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Pituitary Gland

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Pituitary Gland

 

Psychiatry related information on Pituitary Gland

  • Inexperienced, hypophysectomized female rats treated with steroids were used in experiments to investigate the roles of the pituitary gland and prolactin in the expression of maternal behavior [5].
  • METHODS: We measured the volumes of the pituitary gland in 23 patients with bipolar disorder (mean +/- s.d. = 34.3 +/- 9.9 years) and 13 patients with unipolar disorder (41.2 +/- 9.6 years), and 34 healthy control subjects (36.6 +/- 9.6 years) using 1.5 mm thick T1-weighted coronal 1.5 T MRI images [6].
  • However, exposure of hypophyses to CORT for a critical period of time was a prerequisite for such a relationship to develop [7].
  • The present study used a monoclonal antibody against EGFR to examine its expression in pituitary gland, scalp, abdominal skin and brain of 29 patients with and without various dementias and neurological deficits, as well as normal aged controls [8].
  • Levels of mercury (Hg), selenium (Se), iron (Fe), rubidium (Rb), and zinc (Zn) were measured in the pituitary gland to assess the possibility of a potential difference in the environmental Hg exposure of Alzheimer's disease (AD) patients and control subjects and levels of other elements of interest in AD [9].
 

High impact information on Pituitary Gland

  • Finally, although it is well known that dopamine of hypothalamic origin provides inhibitory control over the secretion of prolactin, other factors within the brain, pituitary gland, and peripheral organs have been shown to inhibit or stimulate prolactin secretion as well [10].
  • Atrial natriuretic peptide in brain and pituitary gland [11].
  • The cholecystokinin peptides from the tumors were smaller and less sulfated than cholecystokinin from normal pituitary glands [1].
  • Here we report the cloning of mouse and rat complementary DNAs encoding a new member of the seven-transmembrane-helix, G-protein-coupled receptor family restricted to the pituitary gland, which mediates increases in intracellular cAMP and cAMP-dependent gene transcription in response to GRF [12].
  • Intriguingly, during ontogeny, pit-1 transcripts are observed in the rat neural tube and neural plate (embryonic day 10-11) and disappear thereafter (day 13), only to reappear exclusively in the anterior lobe of the pituitary gland (day 15) just before activation of prolactin and growth hormone [13].
 

Chemical compound and disease context of Pituitary Gland

 

Biological context of Pituitary Gland

 

Anatomical context of Pituitary Gland

 

Associations of Pituitary Gland with chemical compounds

 

Gene context of Pituitary Gland

  • AA-NAT mRNA was found unexpectedly in the pituitary gland and in some brain regions [34].
  • During the development of the pituitary gland, two highly related paired-like homeodomain factors, a repressor, Hesx1/Rpx and an activator, Prop-1, are expressed in sequential, overlapping temporal patterns [35].
  • While loss of pRB causes retinoblastoma in humans and pituitary gland tumors in mice, tumorigenesis in other tissues may be suppressed by p107 and p130 [36].
  • Tumors arise from the intermediate lobe cells of the pituitary gland in p27-/- mice, as well as in Rb+/- mice after loss of the remaining wild-type allele of Rb [37].
  • Pax6 is essential for establishing ventral-dorsal cell boundaries in pituitary gland development [38].
 

Analytical, diagnostic and therapeutic context of Pituitary Gland

References

  1. Pituitary tumors containing cholecystokinin. Rehfeld, J.F., Lindholm, J., Andersen, B.N., Bardram, L., Cantor, P., Fenger, M., Lüdecke, D.K. N. Engl. J. Med. (1987) [Pubmed]
  2. Alteration of endocrine parameters in premenopausal women with breast cancer during long-term adjuvant therapy with tamoxifen as the single agent. Jordan, V.C., Fritz, N.F., Langan-Fahey, S., Thompson, M., Tormey, D.C. J. Natl. Cancer Inst. (1991) [Pubmed]
  3. Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland. Lazzerini Denchi, E., Attwooll, C., Pasini, D., Helin, K. Mol. Cell. Biol. (2005) [Pubmed]
  4. Role of the hypophysis in erythropoietin production during hypoxia. Peschle, C., Rappaport, I.A., Magli, M.C., Marone, G., Lettieri, F., Cillo, C., Gordon, A.S. Blood (1978) [Pubmed]
  5. Prolactin stimulation of maternal behavior in female rats. Bridges, R.S., DiBiase, R., Loundes, D.D., Doherty, P.C. Science (1985) [Pubmed]
  6. Decreased pituitary volume in patients with bipolar disorder. Sassi, R.B., Nicoletti, M., Brambilla, P., Harenski, K., Mallinger, A.G., Frank, E., Kupfer, D.J., Keshavan, M.S., Soares, J.C. Biol. Psychiatry (2001) [Pubmed]
  7. Relationship between ACTH secretion and corticoid binding to specific receptors in perifused adenohypophyses. Koch, B., Lutz-Bucher, B., Briaud, B., Mialhe, C. Neuroendocrinology (1979) [Pubmed]
  8. Epidermal growth factor receptor expression in demented elderly: localization to vascular endothelial cells of brain, pituitary and skin. Styren, S.D., DeKosky, S.T., Rogers, J., Mufson, E.J. Brain Res. (1993) [Pubmed]
  9. Trace elements in Alzheimer's disease pituitary glands. Cornett, C.R., Ehmann, W.D., Wekstein, D.R., Markesbery, W.R. Biological trace element research. (1998) [Pubmed]
  10. Prolactin: structure, function, and regulation of secretion. Freeman, M.E., Kanyicska, B., Lerant, A., Nagy, G. Physiol. Rev. (2000) [Pubmed]
  11. Atrial natriuretic peptide in brain and pituitary gland. Gutkowska, J., Antunes-Rodrigues, J., McCann, S.M. Physiol. Rev. (1997) [Pubmed]
  12. Pit-1-dependent expression of the receptor for growth hormone releasing factor mediates pituitary cell growth. Lin, C., Lin, S.C., Chang, C.P., Rosenfeld, M.G. Nature (1992) [Pubmed]
  13. Autoregulation of pit-1 gene expression mediated by two cis-active promoter elements. Chen, R.P., Ingraham, H.A., Treacy, M.N., Albert, V.R., Wilson, L., Rosenfeld, M.G. Nature (1990) [Pubmed]
  14. Evidence in vivo and in vitro of a role for the pituitary in the growth of malignant lymphomas in Nb rats. Noble, R.L., Beer, C.T., Gout, P.W. Cancer Res. (1980) [Pubmed]
  15. Comparison of two isozymes of carbonic anhydrase in the rat anterior pituitary gland and pituitary tumors. Kimura, H., MacLeod, R.M. Cancer Res. (1975) [Pubmed]
  16. Estrogen-induced hyperplasia and neoplasia in the rat anterior pituitary gland. An immunohistochemical study. Lloyd, R.V. Am. J. Pathol. (1983) [Pubmed]
  17. Hyperplastic pituitary gland, high serum glycoprotein hormone alpha-subunit, and variable circulating thyrotropin (TSH) levels as hallmark of central hypothyroidism due to mutations of the TSH beta gene. Bonomi, M., Proverbio, M.C., Weber, G., Chiumello, G., Beck-Peccoz, P., Persani, L. J. Clin. Endocrinol. Metab. (2001) [Pubmed]
  18. Somatostatin analogs in vitro effects in a growth hormone-releasing hormone-secreting bronchial carcinoid. Zatelli, M.C., Maffei, P., Piccin, D., Martini, C., Rea, F., Rubello, D., Margutti, A., Culler, M.D., Sicolo, N., degli Uberti, E.C. J. Clin. Endocrinol. Metab. (2005) [Pubmed]
  19. Identification of a thyroid hormone receptor that is pituitary-specific. Hodin, R.A., Lazar, M.A., Wintman, B.I., Darling, D.S., Koenig, R.J., Larsen, P.R., Moore, D.D., Chin, W.W. Science (1989) [Pubmed]
  20. Corticotropin releasing factor (CRF) binding protein: a novel regulator of CRF and related peptides. Behan, D.P., De Souza, E.B., Lowry, P.J., Potter, E., Sawchenko, P., Vale, W.W. Frontiers in neuroendocrinology. (1995) [Pubmed]
  21. The ontogenesis of human fetal hormones. III. Prolactin. Aubert, M.J., Grumbach, M.M., Kaplan, S.L. J. Clin. Invest. (1975) [Pubmed]
  22. Identification of a seven transmembrane helix receptor for corticotropin-releasing factor and sauvagine in mammalian brain. Chang, C.P., Pearse, R.V., O'Connell, S., Rosenfeld, M.G. Neuron (1993) [Pubmed]
  23. Regulation of apoptosis and cell cycle arrest by Zac1, a novel zinc finger protein expressed in the pituitary gland and the brain. Spengler, D., Villalba, M., Hoffmann, A., Pantaloni, C., Houssami, S., Bockaert, J., Journot, L. EMBO J. (1997) [Pubmed]
  24. Gonadotropin releasing hormone agonists stimulate meiotic maturation of follicle-enclosed rat oocytes in vitro. Hillensjö, T., LeMaire, W.J. Nature (1980) [Pubmed]
  25. Magnocellular axons in passage through the median eminence release vasopressin. Holmes, M.C., Antoni, F.A., Aguilera, G., Catt, K.J. Nature (1986) [Pubmed]
  26. Arginine vasopressin as a thyrotropin-releasing hormone. Lumpkin, M.D., Samson, W.K., McCann, S.M. Science (1987) [Pubmed]
  27. Effect of 4,4'-oxydianiline on the thyroid and pituitary glands of F344 rats: a morphologic study with the use of the immunoperoxidase method. Murthy, A.S., Russfield, A.B., Snow, G.J. J. Natl. Cancer Inst. (1985) [Pubmed]
  28. Dynamic properties of an inositol 1,4,5-trisphosphate- and thapsigargin-insensitive calcium pool in mammalian cell lines. Pizzo, P., Fasolato, C., Pozzan, T. J. Cell Biol. (1997) [Pubmed]
  29. Beta-adrenoceptor activation mediates stress-induced secretion of beta-endorphin-related peptides from intermediate but not anterior pituitary. Berkenbosch, F., Tilders, F.J., Vermes, I. Nature (1983) [Pubmed]
  30. Virus persists in beta cells of islets of Langerhans and is associated with chemical manifestations of diabetes. Oldstone, M.B., Southern, P., Rodriquez, M., Lampert, P. Science (1984) [Pubmed]
  31. alpha-Melanocyte-stimulating hormone: reduction in adult rat brain after monosodium glutamate treatment of neonates. Eskay, R.L., Brownstein, M.J., Long, R.T. Science (1979) [Pubmed]
  32. Selective inhibition of follicle-stimulating hormone secretion by estradiol. Mechanism for modulation of gonadotropin responses to low dose pulses of gonadotropin-releasing hormone. Marshall, J.C., Case, G.D., Valk, T.W., Corley, K.P., Sauder, S.E., Kelch, R.P. J. Clin. Invest. (1983) [Pubmed]
  33. Proopiomelanocortin-derived peptides are synthesized and released by human keratinocytes. Schauer, E., Trautinger, F., Köck, A., Schwarz, A., Bhardwaj, R., Simon, M., Ansel, J.C., Schwarz, T., Luger, T.A. J. Clin. Invest. (1994) [Pubmed]
  34. Pineal serotonin N-acetyltransferase: expression cloning and molecular analysis. Coon, S.L., Roseboom, P.H., Baler, R., Weller, J.L., Namboodiri, M.A., Koonin, E.V., Klein, D.C. Science (1995) [Pubmed]
  35. Temporal regulation of a paired-like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. Dasen, J.S., Barbera, J.P., Herman, T.S., Connell, S.O., Olson, L., Ju, B., Tollkuhn, J., Baek, S.H., Rose, D.W., Rosenfeld, M.G. Genes Dev. (2001) [Pubmed]
  36. Tissue-specific tumor suppressor activity of retinoblastoma gene homologs p107 and p130. Dannenberg, J.H., Schuijff, L., Dekker, M., van der Valk, M., te Riele, H. Genes Dev. (2004) [Pubmed]
  37. p27 and Rb are on overlapping pathways suppressing tumorigenesis in mice. Park, M.S., Rosai, J., Nguyen, H.T., Capodieci, P., Cordon-Cardo, C., Koff, A. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  38. Pax6 is essential for establishing ventral-dorsal cell boundaries in pituitary gland development. Kioussi, C., O'Connell, S., St-Onge, L., Treier, M., Gleiberman, A.S., Gruss, P., Rosenfeld, M.G. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  39. Induced expression of the glucocorticoid receptor in the rat intermediate pituitary lobe. Antakly, T., Sasaki, A., Liotta, A.S., Palkovits, M., Krieger, D.T. Science (1985) [Pubmed]
  40. Autoantibodies to prolactin-secreting cells of human pituitary. Bottazzo, G.F., Pouplard, A., Florin-Christensen, A., Doniach, D. Lancet (1975) [Pubmed]
  41. Diazepam binding inhibitor gene expression: location in brain and peripheral tissues of rat. Alho, H., Fremeau, R.T., Tiedge, H., Wilcox, J., Bovolin, P., Brosius, J., Roberts, J.L., Costa, E. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  42. Vasopressin RNA in the neural lobe of the pituitary: dramatic accumulation in response to salt loading. Murphy, D., Levy, A., Lightman, S., Carter, D. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  43. Localization of vasopressin mRNA and immunoreactivity in pituicytes of pituitary stalk-transected rats after osmotic stimulation. Pu, L.P., Van Leeuwen, F.W., Tracer, H.L., Sonnemans, M.A., Loh, Y.P. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
 
WikiGenes - Universities