Molecular mechanism of PCNA-dependent base excision repair.
In higher eukaryotes, base excision repair can proceed by two alternative pathways: a DNA polymerase beta-dependent pathway and a proliferating cell nuclear antigen (PCNA)-dependent pathway. Recently, we have reconstituted the PCNA-dependent AP site repair reaction with six purified human proteins: AP endonuclease, replication factor C (RFC), PCNA, flap endonuclease 1 (FEN1), DNA polymerase delta (pol delta), and DNA ligase I. In this reconstituted system, the number of nucleotides replaced during the repair reaction (patch size) was predominantly two nucleotides. PCNA can directly interact with RFC, pol delta, FEN1 and DNA ligase I. These interactions are partly through a consensus motif, QXX(I/L/M)XX(F/H)(F/Y), found in each of the four proteins. PCNA functions as a molecular adaptor for recruiting these factors to the site of DNA repair. Two DNA-N-glycosylases among those so far cloned from human, UNG2 and MYH, are found to have the same PCNA-binding motif. Major substrates of these enzymes, a uracil opposite an adenine for UNG2 and an adenine opposite an 8-oxoguanine for MYH, are formed during DNA replication. Therefore, UNG2 and MYH may serve for replication- coupled base excision repair through the direct interaction with PCNA in the replication machinery.[1]References
- Molecular mechanism of PCNA-dependent base excision repair. Matsumoto, Y. Prog. Nucleic Acid Res. Mol. Biol. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg