The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Expression of imprinted genes in human preimplantation development.

Imprinted gene expression in preimplantation development has been extensively studied in the mouse. Different imprinted genes vary in their time of onset of expression and also in the timing and tissue-specificity of mono-allelic expression. We have surveyed a range of imprinted genes for expression, and mono-allelic expression, in human development. Due to the scarcity of human embryos available for research, we first prepared amplified cDNA from replicate samples of human oocytes, four-cell, eight-cell and blastocyst stages. We then analysed these cDNAs for expression of a range of imprinted genes. Three of six genes analysed (SNRPN, PEG1 and UBE3A) are clearly expressed in preimplantation embryos. Expression was confirmed by direct analysis of embryos for these genes. For one of the expressed genes, SNRPN, we have shown that expression is mono-allelic from the paternal allele in human preimplantation embryos. This gene is also mono-allelically expressed in mouse preimplantation embryos. In our earlier work, we investigated the molecular mechanisms governing mono-allelic expression of the paternal allele of the Xist gene in preimplantation mouse embryos. We found that mono-allelic expression was correlated with differential methylation of Xist promoter sites in egg and sperm, and specific binding of a protein only to the methylated maternal (egg) allele. However, extension of these studies to the human showed that, unlike the mouse, XIST is expressed from both parental alleles in human preimplantation embryos. Since perturbation of imprinting is associated with disease and tumourigenesis, it is important to know the expression profiles of imprinted genes in human embryos and to monitor for normal imprinted gene expression with the introduction of new procedures in assisted conception.[1]


  1. Expression of imprinted genes in human preimplantation development. Monk, M., Salpekar, A. Mol. Cell. Endocrinol. (2001) [Pubmed]
WikiGenes - Universities