The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

SNRPN  -  small nuclear ribonucleoprotein polypeptide N

Homo sapiens

Synonyms: HCERN3, PWCR, RT-LI, SM-D, SMN, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of SNRPN


Psychiatry related information on SNRPN

  • In their original configurations, SNRPN and UBE3A are expressed from both alleles, implying that acquisition of imprinting occurred after their rearrangement and required the evolution of a control locus [6].
  • To increase our understanding of the regulation of expression of this imprinted gene, we have developed single-cell-sensitive procedures for the analysis of expression of the SNRPN gene during early human development [7].
  • The molecular investigation of 75 institutionalized individuals with severe to profound mental retardation resulted in the detection of 1 case with an abnormal methylation pattern of the SNRPN gene, corresponding to AS [8].
  • RT84 Id was positively associated with antibodies to Sm-D peptide 1-20 and to Ro/SSA 60 kD peptide 304-324, but negatively associated with anti-dsDNA activity [9].

High impact information on SNRPN

  • HaploChIP showed close correlation between the level of bound phosphorylated RNA polymerase II at the SNRPN locus and allele-specific expression [10].
  • Moreover, we found that CpG-rich regions in SNURF-SNRPN and NDN, which in somatic tissues are methylated on the maternal allele, are hypomethylated in unfertilized human oocytes [11].
  • In some patients, this is associated with a deletion of the SNURF-SNRPN exon 1 region inherited from the paternal grandmother and the presence of a maternal imprint on the paternal chromosome [11].
  • The SNRPN promoter is not required for genomic imprinting of the Prader-Willi/Angelman domain in mice [12].
  • Our results show that IGHMBP2 is the second gene found to be defective in spinal muscular atrophy, and indicate that IGHMBP2 and SMN share common functions important for motor neuron maintenance and integrity in mammals [13].

Chemical compound and disease context of SNRPN


Biological context of SNRPN


Anatomical context of SNRPN

  • Imprinting analysis using reverse transcription-polymerase chain reaction of RNA from fibroblasts and lymphoblasts of deletion Prader-Willi and Angelman patients demonstrated imprinting of SNRPN with exclusive expression from the paternal allele, but E6-AP and PAR-2 were not imprinted in these cultured human cells [20].
  • Our results indicate that the maternal imprints for the IC-region of the human SNRPN-gene are already re-established at the GV stage and that they are not re-established in a late oocyte stage or after fertilization as previously reported [21].
  • This view is supported by our studies of the imprinted SNRPN gene in that cells with paternal allele-specific expression (lymphocytes and lymphoblasts) replicate SNRPN alleles asynchronously, whereas cells with a low level of expression (HeLa) replicate SNRPN later and with less allelic asynchrony [22].
  • Methylation imprints of the imprint control region of the SNRPN-gene in human gametes and preimplantation embryos [21].
  • The ability to analyze for imprinting and expression of SNRPN and other genes in this region in cultured human cells will be a valuable tool for analyzing the molecular basis of the Prader-Willi and Angelman syndromes, although imprinting may differ between cultured cells and tissues.(ABSTRACT TRUNCATED AT 250 WORDS)[20]

Associations of SNRPN with chemical compounds


Physical interactions of SNRPN


Regulatory relationships of SNRPN

  • The allelic expression of small nuclear ribonucleoprotein N (SNRPN) was stringently regulated while that of multimembrane-spanning polyspecific transporter-like gene 1 (IMPT1) showed a large degree of variation [27].
  • For example, the differentially methylated 5 -portion of the human SNRPN gene-a sequence element that controls imprinting in the Prader-Willi and Angelman syndromes' domain on chromosome 15q11- q13-has strong DNase-I hypersensitive sites on the unmethylated paternal chromosome (4) [28].
  • Our findings are compatible with the assumption that imprinted UBE3A expression is regulated through the SNURF-SNRPN sense- UBE3A antisense transcript [29].

Other interactions of SNRPN


Analytical, diagnostic and therapeutic context of SNRPN

  • Transcription from the first two exons and last seven exons of the SNRPN gene was also detected with RT-PCR; however, the complete mRNA (10 exons) was not detected [35].
  • Since transcriptional regulation by DNA methylation involves histone deacetylation, we explored whether differences in histone acetylation exist between the two parental alleles of SNRPN and other paternally expressed genes in the region by using a chromatin immunoprecipitation assay with antibodies against acetylated histones H3 and H4 [23].
  • In contrast to several cDNA clones and RT-PCR products, however, the 3.4-kb transcript detected by Northern blot hybridization with a probe for the novel exons does not contain SNRPN [36].
  • The asynchrony pattern was significantly higher in XP carriers and patients with all three coding loci analyzed and significantly lower in XP patients and carriers with the imprinted locus SNRPN than in the control group [37].
  • Correct prenatal diagnoses were obtained in 24 out of 24 samples using the 5' SNRPN locus; 4 out of 15 using the ZNF127 locus; and 10 out of 18 using the PW71 locus [38].


  1. Maternal imprinting of human SNRPN, a gene deleted in Prader-Willi syndrome. Reed, M.L., Leff, S.E. Nat. Genet. (1994) [Pubmed]
  2. Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene. Glenn, C.C., Saitoh, S., Jong, M.T., Filbrandt, M.M., Surti, U., Driscoll, D.J., Nicholls, R.D. Am. J. Hum. Genet. (1996) [Pubmed]
  3. Multipoint imprinting analysis indicates a common precursor cell for gonadal and nongonadal pediatric germ cell tumors. Schneider, D.T., Schuster, A.E., Fritsch, M.K., Hu, J., Olson, T., Lauer, S., Göbel, U., Perlman, E.J. Cancer Res. (2001) [Pubmed]
  4. Maintenance of imprinting of the insulin-like growth factor II gene (IGF2) and the small nuclear ribonucleoprotein polypeptide N gene (SNRPN) in the human uterus and leiomyoma. Hashimoto, K., Azuma, C., Kamiura, S., Koyama, M., Nobunaga, T., Tokugawa, Y., Kimura, T., Kubota, Y., Sawai, K., Saji, F. Gynecol. Obstet. Invest. (1996) [Pubmed]
  5. Analysis of the methylation status of imprinted genes based on methylation-specific polymerase chain reaction combined with denaturing high-performance liquid chromatography. Baumer, A. Methods (2002) [Pubmed]
  6. Recent assembly of an imprinted domain from non-imprinted components. Rapkins, R.W., Hore, T., Smithwick, M., Ager, E., Pask, A.J., Renfree, M.B., Kohn, M., Hameister, H., Nicholls, R.D., Deakin, J.E., Graves, J.A. PLoS Genet. (2006) [Pubmed]
  7. Imprinted expression of SNRPN in human preimplantation embryos. Huntriss, J., Daniels, R., Bolton, V., Monk, M. Am. J. Hum. Genet. (1998) [Pubmed]
  8. Angelman syndrome methylation screening of 15q11-q13 in institutionalized individuals with severe mental retardation. Aquino, N.H., Bastos, E., Fonseca, L.C., Llerena, J.C. Genet. Test. (2002) [Pubmed]
  9. Interplay of four idiotypes and interaction with autoantibodies in lupus patients, their relatives and their spouses. Youinou, P., Isenberg, D.A., Kalsi, J.K., Dugoujon, J.M., Ravirajan, C.T., Muller, S., Blanco, F., Piette, J.C., Guillevin, L., Jouquan, J., Semana, G., Salmon, D., Shoenfeld, Y., Bach, J.F. J. Autoimmun. (1996) [Pubmed]
  10. In vivo characterization of regulatory polymorphisms by allele-specific quantification of RNA polymerase loading. Knight, J.C., Keating, B.J., Rockett, K.A., Kwiatkowski, D.P. Nat. Genet. (2003) [Pubmed]
  11. Maternal methylation imprints on human chromosome 15 are established during or after fertilization. El-Maarri, O., Buiting, K., Peery, E.G., Kroisel, P.M., Balaban, B., Wagner, K., Urman, B., Heyd, J., Lich, C., Brannan, C.I., Walter, J., Horsthemke, B. Nat. Genet. (2001) [Pubmed]
  12. The SNRPN promoter is not required for genomic imprinting of the Prader-Willi/Angelman domain in mice. Bressler, J., Tsai, T.F., Wu, M.Y., Tsai, S.F., Ramirez, M.A., Armstrong, D., Beaudet, A.L. Nat. Genet. (2001) [Pubmed]
  13. Mutations in the gene encoding immunoglobulin mu-binding protein 2 cause spinal muscular atrophy with respiratory distress type 1. Grohmann, K., Schuelke, M., Diers, A., Hoffmann, K., Lucke, B., Adams, C., Bertini, E., Leonhardt-Horti, H., Muntoni, F., Ouvrier, R., Pfeufer, A., Rossi, R., Van Maldergem, L., Wilmshurst, J.M., Wienker, T.F., Sendtner, M., Rudnik-Schöneborn, S., Zerres, K., Hübner, C. Nat. Genet. (2001) [Pubmed]
  14. Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients. Andreassi, C., Jarecki, J., Zhou, J., Coovert, D.D., Monani, U.R., Chen, X., Whitney, M., Pollok, B., Zhang, M., Androphy, E., Burghes, A.H. Hum. Mol. Genet. (2001) [Pubmed]
  15. Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Sumner, C.J., Huynh, T.N., Markowitz, J.A., Perhac, J.S., Hill, B., Coovert, D.D., Schussler, K., Chen, X., Jarecki, J., Burghes, A.H., Taylor, J.P., Fischbeck, K.H. Ann. Neurol. (2003) [Pubmed]
  16. Macromolecular complexes: SMN--the master assembler. Terns, M.P., Terns, R.M. Curr. Biol. (2001) [Pubmed]
  17. Exclusion of SNRPN as a major determinant of Prader-Willi syndrome by a translocation breakpoint. Schulze, A., Hansen, C., Skakkebaek, N.E., Brøndum-Nielsen, K., Ledbeter, D.H., Tommerup, N. Nat. Genet. (1996) [Pubmed]
  18. Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader-Willi syndrome critical region. Ozçelik, T., Leff, S., Robinson, W., Donlon, T., Lalande, M., Sanjines, E., Schinzel, A., Francke, U. Nat. Genet. (1992) [Pubmed]
  19. Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene. Dittrich, B., Buiting, K., Korn, B., Rickard, S., Buxton, J., Saitoh, S., Nicholls, R.D., Poustka, A., Winterpacht, A., Zabel, B., Horsthemke, B. Nat. Genet. (1996) [Pubmed]
  20. Imprinting analysis of three genes in the Prader-Willi/Angelman region: SNRPN, E6-associated protein, and PAR-2 (D15S225E). Nakao, M., Sutcliffe, J.S., Durtschi, B., Mutirangura, A., Ledbetter, D.H., Beaudet, A.L. Hum. Mol. Genet. (1994) [Pubmed]
  21. Methylation imprints of the imprint control region of the SNRPN-gene in human gametes and preimplantation embryos. Geuns, E., De Rycke, M., Van Steirteghem, A., Liebaers, I. Hum. Mol. Genet. (2003) [Pubmed]
  22. Allele-specific replication timing in imprinted domains: absence of asynchrony at several loci. Kawame, H., Gartler, S.M., Hansen, R.S. Hum. Mol. Genet. (1995) [Pubmed]
  23. Association of acetylated histones with paternally expressed genes in the Prader--Willi deletion region. Fulmer-Smentek, S.B., Francke, U. Hum. Mol. Genet. (2001) [Pubmed]
  24. Imprinted segments in the human genome: different DNA methylation patterns in the Prader-Willi/Angelman syndrome region as determined by the genomic sequencing method. Zeschnigk, M., Schmitz, B., Dittrich, B., Buiting, K., Horsthemke, B., Doerfler, W. Hum. Mol. Genet. (1997) [Pubmed]
  25. Characterization of cis- and trans-acting elements in the imprinted human SNURF-SNRPN locus. Rodriguez-Jato, S., Nicholls, R.D., Driscoll, D.J., Yang, T.P. Nucleic Acids Res. (2005) [Pubmed]
  26. Assessment of SNRPN expression as a molecular tool in the diagnosis of Prader-Willi syndrome. Carrel, A.L., Huber, S., Allen, D.B., Voelkerding, K.V. Mol. Diagn. (1999) [Pubmed]
  27. Epigenetic heterogeneity at imprinted loci in normal populations. Sakatani, T., Wei, M., Katoh, M., Okita, C., Wada, D., Mitsuya, K., Meguro, M., Ikeguchi, M., Ito, H., Tycko, B., Oshimura, M. Biochem. Biophys. Res. Commun. (2001) [Pubmed]
  28. Probing chromatin structure with nuclease sensitivity assays. Gregory, R.I., Khosla, S., Feil, R. Methods Mol. Biol. (2001) [Pubmed]
  29. SNURF-SNRPN and UBE3A transcript levels in patients with Angelman syndrome. Runte, M., Kroisel, P.M., Gillessen-Kaesbach, G., Varon, R., Horn, D., Cohen, M.Y., Wagstaff, J., Horsthemke, B., Buiting, K. Hum. Genet. (2004) [Pubmed]
  30. Array-based comparative genomic hybridization for the detection of DNA sequence copy number changes in Barrett's adenocarcinoma. Albrecht, B., Hausmann, M., Zitzelsberger, H., Stein, H., Siewert, J.R., Hopt, U., Langer, R., Höfler, H., Werner, M., Walch, A. J. Pathol. (2004) [Pubmed]
  31. Loss of H19 imprinting and up-regulation of H19 and SNRPN in a case with malignant mixed Müllerian tumor of the uterus. Hashimoto, K., Azuma, C., Tokugawa, Y., Nobunaga, T., Aki, T.A., Matsui, Y., Yanagida, T., Izumi, H., Saji, F., Murata, Y. Hum. Pathol. (1997) [Pubmed]
  32. MECP2 mutations in Rett syndrome adversely affect lymphocyte growth, but do not affect imprinted gene expression in blood or brain. Balmer, D., Arredondo, J., Samaco, R.C., LaSalle, J.M. Hum. Genet. (2002) [Pubmed]
  33. Evidence for uniparental, paternal expression of the human GABAA receptor subunit genes, using microcell-mediated chromosome transfer. Meguro, M., Mitsuya, K., Sui, H., Shigenami, K., Kugoh, H., Nakao, M., Oshimura, M. Hum. Mol. Genet. (1997) [Pubmed]
  34. Homologous pairing of 15q11-13 imprinted domains in brain is developmentally regulated but deficient in Rett and autism samples. Thatcher, K.N., Peddada, S., Yasui, D.H., Lasalle, J.M. Hum. Mol. Genet. (2005) [Pubmed]
  35. Breakage in the SNRPN locus in a balanced 46,XY,t(15;19) Prader-Willi syndrome patient. Sun, Y., Nicholls, R.D., Butler, M.G., Saitoh, S., Hainline, B.E., Palmer, C.G. Hum. Mol. Genet. (1996) [Pubmed]
  36. Identification of novel exons 3' to the human SNRPN gene. Buiting, K., Dittrich, B., Endele, S., Horsthemke, B. Genomics (1997) [Pubmed]
  37. Molecular cytogenetic parameters in fibroblasts from patients and carriers of xeroderma pigmentosum. Amiel, A., Peretz, G., Slor, H., Weinstein, G., Fejgin, M.D. Cancer Genet. Cytogenet. (2004) [Pubmed]
  38. DNA methylation analysis with respect to prenatal diagnosis of the Angelman and Prader-Willi syndromes and imprinting. Glenn, C.C., Deng, G., Michaelis, R.C., Tarleton, J., Phelan, M.C., Surh, L., Yang, T.P., Driscoll, D.J. Prenat. Diagn. (2000) [Pubmed]
WikiGenes - Universities