Two regimens of electrogenic cyclic redox chain operation in chromatophores of non-sulfur purple bacteria. A study using antimycin A.
Antimycin A causes a biphasic suppression of the light-induced membrane potential generation in Rhodospirillum rubrum and Rhodopseudomonas sphaeroides chromatophores incubated anerobically. The first phase is observed at low antibiotic concentrations and is apparently due to its action as a cyclic electron transfer inhibitor. The second phase is manifested at concentrations which are greater than 1--2 muM and is due to uncoupling that may be connected with an antibiotic-induced dissipation of the electrochemical H+ gradient across the chromatophore membrane. The inhibitory effect of antimycin added at low concentrations under aerobic conditions is removed by succinate to a large extent. It is expected that the electrogenic cyclic redox chain in the bacterial chromatophores incubed under conditions of continuous illumination may function at two regimes: (1) as a complete chain involving all the redox components, and (2) as a shortened chain involving only the P-870 photoreaction center, ubiquinone and cytochrome c2.[1]References
- Two regimens of electrogenic cyclic redox chain operation in chromatophores of non-sulfur purple bacteria. A study using antimycin A. Remennikov, V.G., Samuilov, V.D. Biochim. Biophys. Acta (1979) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg