The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Cytochrome c catalyses the formation of pentyl radical and octanoic acid radical from linoleic acid hydroperoxide.

A reaction of 13-hydroperoxide octadecadienoic acid (13-HPODE) with cytochrome c was analysed using ESR, HPLC-ESR and HPLC-ESR-MS by the combined use of the spin-trapping technique. The ESR, HPLC-ESR and HPLC-ESR-MS analyses showed that cytochrome c catalyses formation of pentyl and octanoic acid radicals from 13-HPODE. On the other hand, only the alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone/octanoic acid radical adduct was detected in the elution profile of HPLC-ESR for a mixture of 13-HPODE with haematin, indicating that haematin catalyses the formation of octanoic acid radical. In addition, the reaction of 13-HPODE with cytochrome c was inhibited by chlorogenic acid, caffeic acid and ferulic acid via two possible mechanisms, i.e. reducing cytochrome c (chlorogenic acid and caffeic acid) and scavenging the radical intermediates (chlorogenic acid, caffeic acid and ferulic acid).[1]

References

 
WikiGenes - Universities