The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Effect of S(-) perillic acid on protein prenylation and arterial smooth muscle cell proliferation.

A number of proteins post-translationally modified by the covalent attachment of mevalonate-derived isoprene groups farnesol (FOH) or geranylgeraniol (GGOH), play a role in cell proliferation. For this reason, protein farnesyltransferase (PFTase) and protein geranylgeranyltransferases (PGGTases) I and II have gained attention as novel targets for the development of antiproliferative agents. Monoterpenes [limonene, perillic acid (PA) and its derivatives] have been shown to inhibit cell growth and protein prenylation in cancer cells. In the present study, we evaluated the effect of S(-) PA on diploid rat aorta smooth muscle cell (SMC) proliferation as related to protein prenylation. S(-) PA (1-3.5 mM) decreased, in a concentration-dependent manner, rat SMC proliferation as evaluated by cell counting and DNA synthesis. Morphological criteria and flow cytometry analysis excluded the induction of apoptosis as a potential antiproliferative mechanism of S(-) PA on SMC and confirmed a block of the cell cycle progression in G(0)/G(1) phase. The antiproliferative effect of S(-) PA could not be prevented by the addition of mevalonate, FOH, and GGOH to the culture medium and was independent of cholesterol biosynthesis. Densitometric analysis of fluorographed gels, after sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the cell lysates, further supported that S(-) PA (1-3.5 mM), under the same experimental conditions, concentration-dependently inhibited FOH (up to 70%) and GGOH (up to 70%) incorporation into cellular proteins. We provide evidence that S(-) PA affects protein prenylation, an effect that may contribute to its inhibition of SMC proliferation.[1]


  1. Effect of S(-) perillic acid on protein prenylation and arterial smooth muscle cell proliferation. Ferri, N., Arnaboldi, L., Orlandi, A., Yokoyama, K., Gree, R., Granata, A., Hachem, A., Paoletti, R., Gelb, M.H., Corsini, A. Biochem. Pharmacol. (2001) [Pubmed]
WikiGenes - Universities