The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Genetic variation in CYP2A6-mediated nicotine metabolism alters smoking behavior.

Approximately 50% of the initiation of tobacco dependence is genetically influenced, whereas maintenance of dependent smoking behavior and amount smoked have approximately 70% genetic contribution (1-5). Determining the variation in nicotine's inactivation is important because of nicotine's role in producing tobacco dependence and regulating smoking patterns (6-11). The genetically polymorphic CYP2A6 enzyme is responsible for the majority of the metabolic inactivation of nicotine to cotinine (12-14). Both in vitro and in vivo studies have demonstrated considerable interindividual variation in CYP2A6 activity (15-17). CYP2A6 is genetically polymorphic, individuals carrying inactive CYP2A6 alleles have decreased nicotine metabolism, are less likely to become smokers and if they do, they smoke fewer cigarettes per day (13,18,19). The decrease in smoking behavior was confirmed by measuring carbon monoxide (CO, a measure of smoke inhalation) levels, plasma and urine nicotine and cotinine levels, and cigarette counts (13,18,19). A duplication variant in the CYP2A6 gene locus has been identified which increases nicotine inactivation and increases smoking (19). CYP2A6 can also activate tobacco smoke procarcinogens (e.g. NNK, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone); current studies are investigating the role of CYP2A6 in risk for lung cancer. Based on these epidemiologic data it was postulated that inhibition of CYP2A6 activity might be useful in a therapeutic context. Kinetic studies in humans indicated that selective CYP2A6 inhibitors decrease the metabolic removal of nicotine. It was also shown that inhibiting CYP2A6 in vivo (phenocopying, or mimicking the genetic defect) in smokers results in decreased smoking, making nicotine orally bioavailable, and the rerouting of procarcinogens to detoxifying pathways (20-22).[1]


  1. Genetic variation in CYP2A6-mediated nicotine metabolism alters smoking behavior. Tyndale, R.F., Sellers, E.M. Therapeutic drug monitoring. (2002) [Pubmed]
WikiGenes - Universities