The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Nitric oxide synthase expression in hypertension induced by inhibition of glutathione synthase.

Induction of chronic oxidative stress by glutathione (GSH) depletion has been shown to cause hypertension in normal rats. This was accompanied by and perhaps in part due to inactivation and sequestration of NO by reactive oxygen species (ROS), leading to diminished NO bioavailability. This study was designed to examine renal histology, nitric oxide synthase (NOS) isotype expression, and nitrotyrosine distribution in this model. Sprague-Dawley rats were subjected to oxidative stress by administration of the GSH synthase inhibitor buthionine sulfoximine (BSO; 30 mM/l in drinking water) for 2 weeks. The controls were given tap water. Blood pressure, renal histology, tissue expression of endothelial and inducible NOS (eNOS and iNOS) and nitrotyrosine, tissue GSH content, and urinary excretion of NO metabolites (NOx) were examined. The BSO-treated group showed a 3-fold decrease in tissue GSH content, a marked elevation in blood pressure, and a significant reduction in the urinary excretion of NOx. Histological examination of kidneys revealed no significant abnormalities in either group. In addition, no significant differences were observed in either intensities or localizations of eNOS and iNOS in the kidney. However, the BSO-treated group exhibited intense accumulation in the renal tissue of nitrotyrosine, which is the footprint of NO oxidation by ROS. These observations suggest that oxidative stress-induced hypertension is not caused by either structural abnormality of or depressed NOS expression by the kidney in this model. Instead, it is associated with and perhaps partially related to enhanced renal NO inactivation by ROS and diminished NO bioavailability.[1]


  1. Nitric oxide synthase expression in hypertension induced by inhibition of glutathione synthase. Zhou, X.J., Vaziri, N.D., Wang, X.Q., Silva, F.G., Laszik, Z. J. Pharmacol. Exp. Ther. (2002) [Pubmed]
WikiGenes - Universities