The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Salt-inducible kinase represses cAMP-dependent protein kinase-mediated activation of human cholesterol side chain cleavage cytochrome P450 promoter through the CREB basic leucine zipper domain.

Salt-inducible kinase ( SIK), one of the serine/threonine protein kinases, was transiently expressed in Y1 cells during the early phase of the ACTH/cAMP-dependent protein kinase (PKA)-mediated signal transduction. The overexpression of SIK(N), the SIK's N-terminal kinase domain, repressed the expression of the side chain cleavage cytochrome P450 (CYP11A) gene. To elucidate the mechanism of the repression by SIK, several CYP11A promoter constructs were tested for the promoter activities in the presence of PKA and/or SIK(N). A cAMP-response element (CRE)-like sequence present in the promoter was shown to be responsible not only for the PKA-mediated promoter activation but also for the SIK(N)-mediated repression. When the Gal4 DNA binding domain- linked full-length CRE- binding protein (CREB) construct was cotransfected with Gal4 reporter gene, SIK(N) repressed the PKA-induced reporter gene expression. However, SIK(N) could not repress the PKA-induced reporter activity conferred by Gal4 DNA binding domain-linked basic leucine zipper (bZIP)-less CREB or bZIP-disrupted CREB. On the other hand, SIK(N) could repress the kinase-inducible domain-disrupted CREB-dependent reporter gene expression in the presence of PKA. The in vitro kinase reaction studies showed that SIK(N) could not phosphorylate CREB, and PKA failed to phosphorylate SIK(N). Taken together, these results suggest that SIK(N), cooperating with PKA, may act on the CREB's bZIP domain and repress the CREB- mediated transcriptional activation of the CYP11A gene.[1]


WikiGenes - Universities