The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Purinergic regulation of sound transduction and auditory neurotransmission.

In the cochlea, extracellular ATP influences the endocochlear potential, micromechanics, and neurotransmission via P2 receptors. Evidence for this arises from studies demonstrating widespread expression of ATP-gated ion channels (assembled from P2X receptor subunits) and G protein-coupled receptors (P2Y receptors). P2X2 receptor subunits are localized to the luminal membranes of epithelial cells and hair cells lining scala media. These ion channels provide a shunt pathway for K+ ion egress. Thus, when noise exposure elevates ATP levels in this cochlear compartment, the K+ conductance through P2X receptors reduces the endocochlear potential. ATP-mediated K+ efflux from scala media is complemented by a P2Y receptor G protein-coupled pathway that provides coincident reduction of K+ transport into scala media from the stria vascularis when autocrine or paracrine ATP signalling is invoked. This purinergic signalling likely provides a basis for a reactive homoeostatic regulatory mechanism limiting cochlear sensitivity under stressor conditions. Elevation of ATP in the perilymphatic compartment under such conditions is also likely to invoke purinergic receptor-mediated changes in supporting cell micromechanics, mediated by Ca2+ influx and gating of Ca2+ stores. Independent of these humoral actions, ATP can be classified as a putative auditory neurotransmitter based on the localization of P2X receptors at the spiral ganglion neuron-hair cell synapse, and functional verification of ATP-gated currents in spiral ganglion neurons in situ. Expression of P2X receptors by type II spiral ganglion neurons supports a role for ATP as a transmitter encoding the dynamic state of the cochlear amplifier.[1]


  1. Purinergic regulation of sound transduction and auditory neurotransmission. Housley, G.D., Jagger, D.J., Greenwood, D., Raybould, N.P., Salih, S.G., Järlebark, L.E., Vlajkovic, S.M., Kanjhan, R., Nikolic, P., Muñoz, D.J., Thorne, P.R. Audiol. Neurootol. (2002) [Pubmed]
WikiGenes - Universities