The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Molecular approaches to validate disinfectants against human hepatitis B virus.

Disinfection is an important measure to prevent hepatitis B virus (HBV) transmission by instruments. However, virucidal testing of disinfectants against HBV is difficult, because no simple quantitative infectivity assay exists. Since molecular changes of viral epitopes and the genome may indicate virus inactivation, we measured the alteration of these constituents with 0.065% peracetic acid (PAA) for exposure times up to 1 h. Plasma of a chronic HBV carrier with 10(9) HBV genomes/ml served as viral source in the form of a 10% dilution or of a purified HB-antigen preparation. Alterations of HBV epitopes were analyzed with four monoclonal antibodies in an enzyme-linked immunosorbent assay. Changes of the HBV genomes were determined by the inability to amplify the target sequence with a quantitative real-time polymerase chain reaction, either of a short fragment (189 bp) or of the full-length (3,200 bp). The determination of the epitope and genome alteration was quantified as log10 reduction factor (RF) with the parallel line bioassay. Under a high protein load of 10% human plasma, PAA induced a HBV genome alteration of RF = 1.5 after an exposure time of 60 min. Similar RFs were seen with the four HB epitopes. Without protein load, the alteration of these epitopes amounted to a RF of more than 3.5 within 30 min. Such inhibition of PAA activity by protein load was also seen in the virucidal tests with parvovirus. Although the RF were higher in the virucidal tests, the time-dependent dose-response curves for the epitope and genome alteration and for the infectivity inactivation followed the same inactivation kinetics. The molecular alteration and disintegration epitope and genome test may therefore be suitable to measure antiviral activity of disinfectants against HBV.[1]


  1. Molecular approaches to validate disinfectants against human hepatitis B virus. Jursch, C.A., Gerlich, W.H., Glebe, D., Schaefer, S., Marie, O., Thraenhart, O. Med. Microbiol. Immunol. (Berl.) (2002) [Pubmed]
WikiGenes - Universities