Cellular signaling mechanisms underlying pharmacological action of Bak Foong Pills on gastrointestinal secretion.
Bak Foong Pills ( BFP, also known as Bai Feng Wan) is an over-the-counter traditional Chinese medicine that has long been used for treating gynecological disorders and improving overall body functions, including gastrointestinal (GI) function. However, the cellular signaling mechanism underlying BFP action, especially on the GI tract, has not been elucidated. In the present study, the human colonic epithelia cell line T(84) was used as a model to investigate the effect of BFP ethanol extract on ion transport in conjunction with the short-circuit current (I(SC)) technique. The results showed that the apical addition of BFP extract produced a concentration-dependent (10-1,000 microg/ml, EC(50) = 120 microg/ml) increase in I(SC). The maximal response was observed at 500 microg/ml with an increase in I(SC) of 24.4 +/- 2.3 microA/cm(2) and apical conductance. The BFP-induced I(SC) was not observed when extracellular Cl(-) was replaced or when treated with Bumetanide (100 microM), an inhibitor of the Na(+)-K(+)-2Cl(-) cotransporter. The BFP-induced I(SC) was insensitive to the Na(+) channel blocker, amiloride, but partially inhibited by the Cl(-) channel blocker, DIDS (100 microM), and completely blocked by DPC (2 mM) or glibenclamide (1 mM) with a significant reduction in the apical conductance. The BFP-induced I(SC) could be mimicked by forskolin (10 microM), but inhibited by a pretreatment of the cells with adenylate cyclase inhibitor, MDL-12330A (10 microM). Pretreatment with EGTA (5 mM) and thapsigargin (10 microM) decreased the BFP-induced I(SC) by 10%. These results demonstrated that BFP ethanol extract exerted a stimulatory effect on gastrointestinal Cl(-) secretion by predominantly activating adenylate cyclase and apical cAMP-dependent Cl(-) channels, with minor contributions from calcium-dependent Cl(-) channels. The effect of BFP may be explored to treat GI disorders such as constipation.[1]References
- Cellular signaling mechanisms underlying pharmacological action of Bak Foong Pills on gastrointestinal secretion. Zhu, J.X., Chan, Y.M., Tsang, L.L., Chan, L.N., Zhou, Q., Zhou, C.X., Chan, H.C. Jpn. J. Physiol. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg