The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Identification of Saccharomyces cerevisiae isoleucyl-tRNA synthetase as a target of the G1-specific inhibitor Reveromycin A.

To dissect the action mechanism of reveromycin A (RM-A), a G(1)-specific inhibitor, a Saccharomyces cerevisiae dominant mutant specifically resistant to RM-A, was isolated from a strain in which the genes implicated in nonspecific multidrug resistance had been deleted. The mutant gene (YRR2-1) responsible for the resistance was identified as an allele of the ILS1 gene encoding tRNA(Ile) synthetase (IleRS). The activity of IleRS, but not several other aminoacyl-tRNA synthetases examined in wild type cell extract, was highly sensitive to RM-A (IC(50) = 8 ng/ml). The IleRS activity of the YRR2-1 mutant was 4-fold more resistant to the inhibitor compared with that of wild type. The mutation IleRS(N660D), near the KMSKS consensus sequence commonly found in the class I aminoacyl transferases, was found to be responsible for RM-A resistance. Moreover, overexpression of the ILS1 gene from a high-copy plasmid conferred RM-A resistance. These results indicated that IleRS is a target of RM-A in vivo. A defect of the GCN2 gene led to decreased RM-A resistance. IleRS inhibition by RM-A led to transcriptional activation of the ILS1 gene via the Gcn2-Gcn4 general amino acid control pathway, and this autoregulation seemed to contribute to RM-A resistance.[1]

References

  1. Identification of Saccharomyces cerevisiae isoleucyl-tRNA synthetase as a target of the G1-specific inhibitor Reveromycin A. Miyamoto, Y., Machida, K., Mizunuma, M., Emoto, Y., Sato, N., Miyahara, K., Hirata, D., Usui, T., Takahashi, H., Osada, H., Miyakawa, T. J. Biol. Chem. (2002) [Pubmed]
 
WikiGenes - Universities