The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Evolution of cell phenotype and extracellular matrix in tissue-engineered heart valves during in-vitro maturation and in-vivo remodeling.

BACKGROUND AND AIM OF THE STUDY: Contemporary tissue valves are non-viable, and unable to grow, repair or remodel. It was postulated that tissue-engineered heart valves (TEHV) fabricated from autologous cells and a biodegradable scaffold could yield a dynamic progression of cell phenotype and extracellular matrix (ECM), in vitro and in vivo, and ultimately recapitulate native valve microscopic architecture. METHODS: Trileaflet valve constructs were fabricated from poly-4-hydroxybutyrate-coated polyglycolic acid seeded with ovine endothelial and carotid artery medial cells, cultured in vitro for 4-14 days in a pulse duplicator, implanted as pulmonary valves in five lambs, and explanted at 4-20 weeks. ECM composition and collagen architecture were examined by histology (including Movat pentachrome stain and picrosirius red under polarized light), and cell phenotype by immunohistochemistry. RESULTS: Cells from in-vitro constructs (14 days) were activated myofibroblasts, with strong expression of alpha-actin (microfilaments), vimentin (intermediate filaments) and SMemb (non-muscle myosin produced by activated mesenchymal cells). Cells from in-vivo explants at 16-20 weeks were fibroblast-like, with predominant vimentin expression and undetectable levels of alpha-actin (similar to native valve). Collagen elaboration and cellular expression of MMP-13 (collagenase 3) were evident in vitro at 14 days. In-vivo explants had increased collagen accumulation and strong MMP-13 expression at 4-8 weeks, but less activation (decreased expression of SMemb) and patchy endothelial cells at 16-20 weeks. Moreover, the ECM architecture of 16- to 20-week explanted TEHV resembled that of native valves. CONCLUSION: Cell phenotype and ECM in TEHV prepared in vitro and implanted in vivo are dynamic, and reflect the ability of a vital tissue to remodel and, potentially, to grow.[1]

References

  1. Evolution of cell phenotype and extracellular matrix in tissue-engineered heart valves during in-vitro maturation and in-vivo remodeling. Rabkin, E., Hoerstrup, S.P., Aikawa, M., Mayer, J.E., Schoen, F.J. J. Heart Valve Dis. (2002) [Pubmed]
 
WikiGenes - Universities