The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Involvement of oxidative stress in bee venom-induced inhibition of Na+/glucose cotransporter in renal proximal tubule cells.

1. The present study was conducted to examine the involvement of oxidative stress in bee venom-induced inhibition of the Na+/glucose cotransporter (alpha-methyl-d-glucopyranoside (alpha-MG) uptake), a typical functional marker of proximal tubules, in primary cultured rabbit renal proximal tubule cells (PTC). 2. Bee venom (> or = 1 microg/mL) increased lipid peroxide (LPO) formation over 30 min. The increase in [(3)H]-arachidonic acid (AA) release and LPO formation and the inhibition of alpha-MG uptake induced by bee venom (1 microg/mL) and melittin (a major component of bee venom; 0.5 microg/mL) were blocked by N-acetyl-l-cysteine, vitamin C and vitamin E, anti-oxidants. 3. Bee venom- and melittin-induced increases in LPO formation and inhibition of alpha-MG uptake were significantly prevented by mepacrine and AACOCF(3), phospholipase A(2) inhibitors. In addition, nordihydroguaiareic acid (a lipoxygenase inhibitor) and econazole (a cytochrome P-450 epoxygenase inhibitor), but not indomethacin (a cyclo-oxygenase inhibitor), prevented bee venom- and melittin-induced increases in LPO formation and inhibition of alpha-MG uptake. 4. Nordihydroguaiareic acid prevented bee venom- and melittin-induced increases in Ca(2+) uptake. Moreover, anti- oxidants significantly prevented bee venom- and melittin-induced increases in Ca(2+) uptake. 5. In conclusion, bee venom inhibits alpha-MG uptake via the phospholipase A(2)-oxidative stress-Ca(2+) signalling cascade in primary cultured rabbit renal proximal tubule cells.[1]

References

  1. Involvement of oxidative stress in bee venom-induced inhibition of Na+/glucose cotransporter in renal proximal tubule cells. Han, H.J., Park, S.H., Lee, J.H., Yoon, B.C., Park, K.M., Mar, W.C., Lee, H.J., Kang, S.K. Clin. Exp. Pharmacol. Physiol. (2002) [Pubmed]
 
WikiGenes - Universities