The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

QSPL 196     (2R,3R,4R,5S)-2-[(1R)-1,2- dihydroxyethyl]...

Synonyms: SureCN7152112, AR-1L8556, AC1L34PF, |A-d-glucofuranoside, methyl, alpha-D-Glucofuranoside, methyl
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of alpha-Methyl-D-glucopyranoside


High impact information on alpha-Methyl-D-glucopyranoside


Biological context of alpha-Methyl-D-glucopyranoside


Anatomical context of alpha-Methyl-D-glucopyranoside


Associations of alpha-Methyl-D-glucopyranoside with other chemical compounds


Gene context of alpha-Methyl-D-glucopyranoside

  • COS-7 cells transiently expressing SGLT4 exhibited Na(+)-dependent alpha-methyl-D-glucopyranoside (AMG) transport activity with an apparent K(m) of 2.6 mM, suggesting that SGLT4 is a low affinity-type transporter [16].
  • Thus, SFA binds poorly or not at all to Con A-Sepharose, whereas EFA binds to Con A and can be recovered in the eluate eluted with the competitive sugar alpha-methyl-D-glucopyranoside [17].
  • The induced transport has the functional characteristics of a Na-glucose cotransporter (SGLT), because d-glucose and alpha-methyl-d-glucopyranoside are also accepted substrates that are inhibited by phloridzin [18].


  1. Agglutination reactions of spontaneous canine tumour cells, induced by concanavalin A, demonstrated by an isotopic assay. Betton, G.R. Int. J. Cancer (1976) [Pubmed]
  2. Mycoplasma phosphoenolpyruvate-dependent sugar phosphotransferase system: glucose-negative mutant and regulation of intracellular cyclic AMP. Mugharbil, U., Cirillo, V.P. J. Bacteriol. (1978) [Pubmed]
  3. Primary cultures of renal epithelial cells from X-linked hypophosphatemic (Hyp) mice express defects in phosphate transport and vitamin D metabolism. Bell, C.L., Tenenhouse, H.S., Scriver, C.R. Am. J. Hum. Genet. (1988) [Pubmed]
  4. Five transmembrane helices form the sugar pathway through the Na+/glucose cotransporter. Panayotova-Heiermann, M., Eskandari, S., Turk, E., Zampighi, G.A., Wright, E.M. J. Biol. Chem. (1997) [Pubmed]
  5. Sugar binding to Na+/glucose cotransporters is determined by the carboxyl-terminal half of the protein. Panayotova-Heiermann, M., Loo, D.D., Kong, C.T., Lever, J.E., Wright, E.M. J. Biol. Chem. (1996) [Pubmed]
  6. Kinetics of steady-state currents and charge movements associated with the rat Na+/glucose cotransporter. Panayotova-Heiermann, M., Loo, D.D., Wright, E.M. J. Biol. Chem. (1995) [Pubmed]
  7. Expression of a differentiated transport function in apical membrane vesicles isolated from an established kidney epithelial cell line. Sodium electrochemical potential-mediated active sugar transport. Lever, J.E. J. Biol. Chem. (1982) [Pubmed]
  8. The water-soluble fraction (<10 kD) of bee venom (Apis mellifera) produces inhibitory effect on apical transporters in renal proximal tubule cells. Han, H.J., Yoon, B.C., Oh, Y.J., Park, S.H., Lee, J.H., Mar, W.C. Kidney Blood Press. Res. (2002) [Pubmed]
  9. Involvement of oxidative stress in bee venom-induced inhibition of Na+/glucose cotransporter in renal proximal tubule cells. Han, H.J., Park, S.H., Lee, J.H., Yoon, B.C., Park, K.M., Mar, W.C., Lee, H.J., Kang, S.K. Clin. Exp. Pharmacol. Physiol. (2002) [Pubmed]
  10. Otogeny of sugar transport in fetal rat kidney. LeLièvre-Pégorier, M., Geloso, J.P. Biol. Neonate (1980) [Pubmed]
  11. Molecular characteristics of Na(+)-coupled glucose transporters in adult and embryonic rat kidney. You, G., Lee, W.S., Barros, E.J., Kanai, Y., Huo, T.L., Khawaja, S., Wells, R.G., Nigam, S.K., Hediger, M.A. J. Biol. Chem. (1995) [Pubmed]
  12. Studies on amino acid inhibition of monosaccharide exit from anuran small intestinal epithelium. Boyd, C.A. J. Physiol. (Lond.) (1979) [Pubmed]
  13. Serum of lipopolysaccharide-treated mice contains two types of colony-stimulating factor, separable by affinity chromatography. Staber, F.G., Burgess, A.W. J. Cell. Physiol. (1980) [Pubmed]
  14. Identification of a region critically involved in the interaction of phlorizin with the rabbit sodium-D-glucose cotransporter SGLT1. Novakova, R., Homerova, D., Kinne, R.K., Kinne-Saffran, E., Lin, J.T. J. Membr. Biol. (2001) [Pubmed]
  15. High-yield functional expression of human sodium/d-glucose cotransporter1 in Pichia pastoris and characterization of ligand-induced conformational changes as studied by tryptophan fluorescence. Tyagi, N.K., Goyal, P., Kumar, A., Pandey, D., Siess, W., Kinne, R.K. Biochemistry (2005) [Pubmed]
  16. SLC5A9/SGLT4, a new Na+-dependent glucose transporter, is an essential transporter for mannose, 1,5-anhydro-D-glucitol, and fructose. Tazawa, S., Yamato, T., Fujikura, H., Hiratochi, M., Itoh, F., Tomae, M., Takemura, Y., Maruyama, H., Sugiyama, T., Wakamatsu, A., Isogai, T., Isaji, M. Life Sci. (2005) [Pubmed]
  17. Regulation of IgE antibody production by serum molecules. IV. Complete Freund's adjuvant induces both enhancing and suppressive activities detectable in the serum of low and high responder mice. Katz, D.H., Bargatze, R.F., Bogowitz, C.A., Katz, L.R. J. Immunol. (1979) [Pubmed]
  18. Rat kidney MAP17 induces cotransport of Na-mannose and Na-glucose in Xenopus laevis oocytes. Blasco, T., Aramayona, J.J., Alcalde, A.I., Catalán, J., Sarasa, M., Sorribas, V. Am. J. Physiol. Renal Physiol. (2003) [Pubmed]
WikiGenes - Universities