The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mechanisms of 2-butoxyethanol carcinogenicity: studies on Syrian Hamster Embryo (SHE) cell transformation.

Previous studies showed that 2-butoxyethanol increased liver tumors in B6C3F1 mice following chronic exposure. While the mechanism of 2-butoxyethanol-induced liver carcinogenicity has not been defined, 2-butoxyethanol has been shown to induce hemolysis in rodents via 2-butoxyacetic acid, the major metabolite of 2-butoxyethanol. This toxic effect, coupled with the observation that continued treatment with 2-butoxyethanol results in hemosiderin deposition in the liver, has led to our hypothesis that liver carcinogenicity by 2-butoxyethnaol is mediated via oxidative stress (iron catalyzed) and Kupffer cell activation. The present study used Syrian Hamster Embryo (SHE) cell transformation, a surrogate in vitro model for carcinogenesis in vivo, to examine whether 2-butoxyethanol, 2-butoxyacetic acid, or iron (ferrous sulfate) produced cell transformation. SHE cells were treated with either 2-butoxyethanol (0.5-20 mM), 2-butoxyacetic acid (0.5-20 mM), or ferrous sulfate (0.5-75 microg/ml) for 7 days. 2-Butoxyethanol and 2-butoxyacetic acid did not induce cellular transformation. In contrast, treatment with ferrous sulfate (2.5 and 5.0 microg/ml) increased morphological transformation. Cotreatment of ferrous sulfate with the antioxidants alpha-tocopherol (vitamin E) or (-)-epigallocatechin-3-gallate (EGCG) prevented ferrous sulfate-induced transformation, suggesting the involvement of oxidative stress in SHE cell transformation. The level of oxidative DNA damage (OH8dG) increased following ferrous sulfate treatment in SHE cells; additionally, using single cell gel electrophoresis (comet assay), ferrous sulfate treatment produced an increase in DNA damage. Both DNA lesions were decreased by cotreatment of ferrous sulfate with antioxidants. These data support our proposal that iron, produced indirectly through hemolysis, and not 2-butoxyethanol or its metabolite 2-butoxyacetic acid, is responsible for the observed carcinogenicity of 2-butoxyethanol.[1]

References

 
WikiGenes - Universities