The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Hsp90 enables Ctf13p/Skp1p to nucleate the budding yeast kinetochore.

Binding of CBF3, a protein complex consisting of Ndc10p, Cep3p, Ctf13p, and Skp1p, to the centromere DNA nucleates kinetochore formation in budding yeast. Here, we investigate how the Ctf13p/Skp1p complex becomes competent to form the CBF3-centromere DNA complex. As revealed by mass spectrometry, Ctf13p and Skp1p carry two and four phosphate groups, respectively. Complete dephosphorylation of Ctf13p and Skp1p does not interfere with the formation of CBF3-centromere DNA complexes in vitro. Furthermore, deletion of corresponding phosphorylation sites results in viable cells. Thus, in contrast to the current view, phosphorylation of Ctf13p and Skp1p is not essential for the formation of CBF3-centromere DNA complexes. Instead, the formation of active Ctf13p/Skp1p requires Hsp90. Several lines of evidence support this conclusion: activation of heterologous Ctf13p/Skp1p by reticulocyte lysate is inhibited by geldanamycin and Hsp90 depletion. skp1 mutants exhibit growth defects on media containing geldanamycin. A skp1 mutation together with Hsp90 mutations exhibits synthetic lethality. An Hsp90 mutant contains decreased levels of active Ctf13p/Skp1p.[1]


  1. Hsp90 enables Ctf13p/Skp1p to nucleate the budding yeast kinetochore. Stemmann, O., Neidig, A., Köcher, T., Wilm, M., Lechner, J. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
WikiGenes - Universities