Gene Review:
HSP82 - Hsp90 family chaperone HSP82
Saccharomyces cerevisiae S288c
Synonyms:
82 kDa heat shock protein, ATP-dependent molecular chaperone HSP82, HSP90, Heat shock protein Hsp90 heat-inducible isoform, YPL240C
- RNA polymerase-specific nucleosome disruption by transcription in vivo. Sathyanarayana, U.G., Freeman, L.A., Lee, M.S., Garrard, W.T. J. Biol. Chem. (1999)
- Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Zhao, R., Davey, M., Hsu, Y.C., Kaplanek, P., Tong, A., Parsons, A.B., Krogan, N., Cagney, G., Mai, D., Greenblatt, J., Boone, C., Emili, A., Houry, W.A. Cell (2005)
- Hsp90 chaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases. Nadeau, K., Das, A., Walsh, C.T. J. Biol. Chem. (1993)
- A new member of the hsp90 family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat shock. Chen, C.F., Chen, Y., Dai, K., Chen, P.L., Riley, D.J., Lee, W.H. Mol. Cell. Biol. (1996)
- Hsp90 inhibition accelerates cell lysis. Anti-Hsp90 ribozyme reveals a complex mechanism of Hsp90 inhibitors involving both superoxide- and Hsp90-dependent events. Sreedhar, A.S., Mihály, K., Pató, B., Schnaider, T., Steták, A., Kis-Petik, K., Fidy, J., Simonics, T., Maraz, A., Csermely, P. J. Biol. Chem. (2003)
- The Mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Roe, S.M., Ali, M.M., Meyer, P., Vaughan, C.K., Panaretou, B., Piper, P.W., Prodromou, C., Pearl, L.H. Cell (2004)
- Regulation of the myosin-directed chaperone UNC-45 by a novel E3/E4-multiubiquitylation complex in C. elegans. Hoppe, T., Cassata, G., Barral, J.M., Springer, W., Hutagalung, A.H., Epstein, H.F., Baumeister, R. Cell (2004)
- Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Scheufler, C., Brinker, A., Bourenkov, G., Pegoraro, S., Moroder, L., Bartunik, H., Hartl, F.U., Moarefi, I. Cell (2000)
- Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Prodromou, C., Roe, S.M., O'Brien, R., Ladbury, J.E., Piper, P.W., Pearl, L.H. Cell (1997)
- CDC37 is required for p60v-src activity in yeast. Dey, B., Lightbody, J.J., Boschelli, F. Mol. Biol. Cell (1996)
- Preclinical assessment of the efficacy of mycograb, a human recombinant antibody against fungal HSP90. Matthews, R.C., Rigg, G., Hodgetts, S., Carter, T., Chapman, C., Gregory, C., Illidge, C., Burnie, J. Antimicrob. Agents Chemother. (2003)
- Recombinant antibodies: a natural partner in combinatorial antifungal therapy. Matthews, R.C., Burnie, J.P. Vaccine (2004)
- A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene. Gross, D.S., Adams, C.C., Lee, S., Stentz, B. EMBO J. (1993)
- SIR repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin. Sekinger, E.A., Gross, D.S. EMBO J. (1999)
- Displacement of Histones at Promoters of Saccharomyces cerevisiae Heat Shock Genes Is Differentially Associated with Histone H3 Acetylation. Erkina, T.Y., Erkine, A.M. Mol. Cell. Biol. (2006)
- hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Borkovich, K.A., Farrelly, F.W., Finkelstein, D.B., Taulien, J., Lindquist, S. Mol. Cell. Biol. (1989)
- Conditional silencing: the HMRE mating-type silencer exerts a rapidly reversible position effect on the yeast HSP82 heat shock gene. Lee, S., Gross, D.S. Mol. Cell. Biol. (1993)
- The yeast heat shock response is induced by conversion of cells to spheroplasts and by potent transcriptional inhibitors. Adams, C.C., Gross, D.S. J. Bacteriol. (1991)
- The molecular chaperone Hsp90 is required for high osmotic stress response in Saccharomyces cerevisiae. Yang, X.X., Maurer, K.C., Molanus, M., Mager, W.H., Siderius, M., Vies, S.M. FEMS Yeast Res. (2006)
- Sensitivity to Hsp90-targeting drugs can arise with mutation to the Hsp90 chaperone, cochaperones and plasma membrane ATP binding cassette transporters of yeast. Piper, P.W., Millson, S.H., Mollapour, M., Panaretou, B., Siligardi, G., Pearl, L.H., Prodromou, C. Eur. J. Biochem. (2003)
- In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. Obermann, W.M., Sondermann, H., Russo, A.A., Pavletich, N.P., Hartl, F.U. J. Cell Biol. (1998)
- Genomic footprinting of the yeast HSP82 promoter reveals marked distortion of the DNA helix and constitutive occupancy of heat shock and TATA elements. Gross, D.S., English, K.E., Collins, K.W., Lee, S.W. J. Mol. Biol. (1990)
- Temperature-sensitive mutants of hsp82 of the budding yeast Saccharomyces cerevisiae. Kimura, Y., Matsumoto, S., Yahara, I. Mol. Gen. Genet. (1994)
- Identification of SSF1, CNS1, and HCH1 as multicopy suppressors of a Saccharomyces cerevisiae Hsp90 loss-of-function mutation. Nathan, D.F., Vos, M.H., Lindquist, S. Proc. Natl. Acad. Sci. U.S.A. (1999)
- SBA1 encodes a yeast hsp90 cochaperone that is homologous to vertebrate p23 proteins. Fang, Y., Fliss, A.E., Rao, J., Caplan, A.J. Mol. Cell. Biol. (1998)
- Cns1 is an essential protein associated with the hsp90 chaperone complex in Saccharomyces cerevisiae that can restore cyclophilin 40-dependent functions in cpr7Delta cells. Marsh, J.A., Kalton, H.M., Gaber, R.F. Mol. Cell. Biol. (1998)
- Interaction between the N-terminal and middle regions is essential for the in vivo function of HSP90 molecular chaperone. Matsumoto, S., Tanaka, E., Nemoto, T.K., Ono, T., Takagi, T., Imai, J., Kimura, Y., Yahara, I., Kobayakawa, T., Ayuse, T., Oi, K., Mizuno, A. J. Biol. Chem. (2002)
- Sgt1 associates with Hsp90: an initial step of assembly of the core kinetochore complex. Bansal, P.K., Abdulle, R., Kitagawa, K. Mol. Cell. Biol. (2004)
- Sti1 and Cdc37 can stabilize Hsp90 in chaperone complexes with a protein kinase. Lee, P., Shabbir, A., Cardozo, C., Caplan, A.J. Mol. Biol. Cell (2004)
- The Cdc37 protein kinase-binding domain is sufficient for protein kinase activity and cell viability. Lee, P., Rao, J., Fliss, A., Yang, E., Garrett, S., Caplan, A.J. J. Cell Biol. (2002)
- A trans-activation domain in yeast heat shock transcription factor is essential for cell cycle progression during stress. Morano, K.A., Santoro, N., Koch, K.A., Thiele, D.J. Mol. Cell. Biol. (1999)
- Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Newnam, G.P., Wegrzyn, R.D., Lindquist, S.L., Chernoff, Y.O. Mol. Cell. Biol. (1999)
- A bipartite operator interacts with a heat shock element to mediate early meiotic induction of Saccharomyces cerevisiae HSP82. Szent-Gyorgyi, C. Mol. Cell. Biol. (1995)
- The Sch9 protein kinase regulates Hsp90 chaperone complex signal transduction activity in vivo. Morano, K.A., Thiele, D.J. EMBO J. (1999)
- The yeast Hsp110 family member, Sse1, is an Hsp90 cochaperone. Liu, X.D., Morano, K.A., Thiele, D.J. J. Biol. Chem. (1999)
- A new Saccharomyces cerevisiae ankyrin repeat-encoding gene required for a normal rate of cell proliferation. Lycan, D.E., Stafford, K.A., Bollinger, W., Breeden, L.L. Gene (1996)
- A yeast heat shock transcription factor (Hsf1) mutant is defective in both Hsc82/Hsp82 synthesis and spindle pole body duplication. Zarzov, P., Boucherie, H., Mann, C. J. Cell. Sci. (1997)
- Transcription factor TFIIH is required for promoter melting in vivo. Guzmán, E., Lis, J.T. Mol. Cell. Biol. (1999)
- A cyclophilin function in Hsp90-dependent signal transduction. Duina, A.A., Chang, H.C., Marsh, J.A., Lindquist, S., Gaber, R.F. Science (1996)
- Fungal heat-shock proteins in human disease. Burnie, J.P., Carter, T.L., Hodgetts, S.J., Matthews, R.C. FEMS Microbiol. Rev. (2006)
- Dissection of the contribution of individual domains to the ATPase mechanism of Hsp90. Wegele, H., Muschler, P., Bunck, M., Reinstein, J., Buchner, J. J. Biol. Chem. (2003)