The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Characterization of lpa(2) (Edg4) and lpa(1)/lpa(2) (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to lpa(2).

Lysophosphatidic acid (LPA), a bioactive lipid produced by several cell types including postmitotic neurons and activated platelets, is thought to be involved in various biological processes, including brain development. Three cognate G protein- coupled receptors encoded by lpa(1)/lp(A1)/Edg-2/Gpcr26, lpa(2)/lp(A2)/Edg-4, and lpa(3)/lp(A3)/Edg-7 mediate the cellular effects of LPA. We have previously shown that deletion of lpa(1) in mice results in craniofacial dysmorphism, semilethality due to defective suckling behavior, and generation of a small fraction of pups with frontal hematoma. To further investigate the role of these receptors and LPA signaling in the organism, we deleted lpa(2) in mice. Homozygous knockout (lpa(2)((-/-))) mice were born at the expected frequency and displayed no obvious phenotypic abnormalities. Intercrosses allowed generation of lpa(1)((-/-)) lpa(2)((-/-)) double knockout mice, which displayed no additional phenotypic abnormalities relative to lpa(1)((-/-)) mice except for an increased incidence of perinatal frontal hematoma. Histological analyses of lpa(1)((-/-)) lpa(2)((-/-)) embryonic cerebral cortices did not reveal obvious differences in the proliferating cell population. However, many LPA-induced responses, including phospholipase C activation, Ca(2+) mobilization, adenylyl cyclase activation, proliferation, JNK activation, Akt activation, and stress fiber formation, were absent or severely reduced in embryonic fibroblasts derived from lpa(1)((-/-)) lpa(2)((-/-)) mice. Except for adenylyl cyclase activation [which was nearly abolished in lpa(1)((-/-)) fibroblasts], these responses were only partially affected in lpa(1)((-/-)) and lpa(2)((-/-)) fibroblasts. Thus, although LPA(2) is not essential for normal mouse development, it does act redundantly with LPA(1) to mediate most LPA responses in fibroblasts.[1]

References

 
WikiGenes - Universities