The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Idiotypic mimicry of a catalytic antibody active site.

We have previously described three catalytic antibodies (Ab1s) raised against human erythrocyte acetylcholinesterase ( AChE). These antibodies both recognise and resemble AChE in their reaction with substrates and appear with a relatively high frequency. We do not know, however, why catalytic activity should have developed in response to a ground state antigen. This question has implication for autoimmune disorders, which are frequently characterised by the presence of catalytic antibodies, many of which have cytotoxic effects. In this study, we raised anti-idiotypic (Ab2) and anti-anti-idiotypic (Ab3) antibodies to a catalytic Ab1 and examined their properties. None of the Ab2s showed catalytic activity, whereas four of the Ab3s did, an incidence of 1.26%. No contamination of antibody preparations with either AChE or butyrylcholinesterase ( BChE) was found. Immunisation of mice with AChE, as well as AChE complexed with various inhibitors, resulted in a significant increase in catalytic immunoglobulins in the serum, compared with non-immunised mice and mice immunised with the Ab1. There appears to be considerable resemblance between Ab1s and Ab3s, but there are also significant differences between the two groups. All the antibodies were inhibited by phenylmethylsulphonyl fluoride (PMSF), indicating the presence of a serine residue in their active sites and were inhibited by the cholinesterase active site inhibitors tetraisopropyl pyrophosphoramide (iso-OMPA) and pyridostigmine. The Ab3s resembled the Ab1s in their ability to hydrolyse both acetylthiocholine (ATCh) and butyrylthiocholine (BTCh). However, the Ab3s appear to be better catalysts, having significantly reduced K(M) values (for ATCh but not BTCh) and increased turnover numbers (K(cat)), rate enhancements (K(cat)/K(uncat)) and K(cat)/K(M) ratios. The Ab3s also had reduced affinities for cholinesterase anionic site inhibitors (edrophonium, tetramethylammonium and BW284c51) and no affinity at all for the AChE peripheral anionic site (PAS) inhibitor fasciculin. All the antibodies recognise, to some degree, the PAS of AChE, shown by their ability to inhibit AChE, to compete with peripheral site inhibitors and to block AChE-mediated cell adhesion, a property of the site. These results indicate idiotypic mimicry of the catalytic antibody's active site, suggesting that the catalytic activity is due to affinity maturation of immunoglobulin genes in response to a specific antigen, namely, the PAS of AChE. Further studies are required to determine the structural features of this ground state antigen responsible for the development of catalytic activity.[1]


  1. Idiotypic mimicry of a catalytic antibody active site. Johnson, G., Moore, S.W. Mol. Immunol. (2002) [Pubmed]
WikiGenes - Universities