The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals.

The plant hormone indole-3 acetic acid (IAA or auxin) controls many aspects of plant development, including the production of lateral roots. Ubiquitin- mediated proteolysis has a central role in this process. The genes AXR1 and TIR1 aid the assembly of an active SCF (Skp1/Cullin/F-box) complex that probably promotes degradation of the AUX/IAA transcriptional repressors in response to auxin. The transcription activator NAC1, a member of the NAM/CUC family of transcription factors, functions downstream of TIR1 to transduce the auxin signal for lateral root development. Here we show that SINAT5, an Arabidopsis homologue of the RING-finger Drosophila protein SINA, has ubiquitin protein ligase activity and can ubiquitinate NAC1. This activity is abolished by mutations in the RING motif of SINAT5. Overexpressing SINAT5 produces fewer lateral roots, whereas overexpression of a dominant-negative Cys49 --> Ser mutant of SINAT5 develops more lateral roots. These lateral root phenotypes correlate with the expression of NAC1 observed in vivo. Low expression of NAC1 in roots can be increased by treatment with a proteasome inhibitor, which indicates that SINAT5 targets NAC1 for ubiquitin- mediated proteolysis to downregulate auxin signals in plant cells.[1]

References

  1. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Xie, Q., Guo, H.S., Dallman, G., Fang, S., Weissman, A.M., Chua, N.H. Nature (2002) [Pubmed]
 
WikiGenes - Universities