The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

UBQ6  -  ubiquitin-40S ribosomal protein S27a-2

Arabidopsis thaliana

Synonyms: F14M4.6, UBI6, UBIQUITIN EXTENSION PROTEIN 6, ubiquitin 6
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of UBQ6

  • We obtained soluble protein for 22 of the 28 uncharacterized UBCs after expression in Escherichia coli and demonstrated that 16 function as ubiquitin E2s [1].
  • We have identified a maize ubiquitin (Ubi) fusion gene (UBF9) by screening a maize W22 genomic phage lambda library with a short (16-nucleotide) oligodeoxyribonucleotide probe derived from the sequence for the extension sequence of a yeast UB13 fusion gene [2].
  • A transcriptional activator, the Gal4 DNA-binding domain fused to the acidic activation domain of herpes simplex virus VP16 protein, driven by a maize ubiquitin promoter, was introduced in one parental line [3].
 

High impact information on UBQ6

 

Biological context of UBQ6

 

Anatomical context of UBQ6

  • In the eukaryotic cell, depending on the nature of the polyubiquitin chain, the ubiquitin-tagged proteins either see their properties modified or are doomed for degradation by the 26S proteasome [11].
  • Northern blot analysis of the Ubiquitin-like gene 5 revealed expression in every tissue tested, with the highest levels of RNA expression in heart, skeletal muscle, kidney, liver, iris, and lymphoblasts [12].
 

Associations of UBQ6 with chemical compounds

  • Proteasome inhibitor studies show that ABI5 stability is regulated by ABA through ubiquitin-related events [13].
  • COI1 encodes an F-box protein, which is a subunit of SCF(COI1) E3 ubiquitin ligase, and is required for jasmonate (JA) responses [14].
  • Arabidopsis CULLIN4 Forms an E3 Ubiquitin Ligase with RBX1 and the CDD Complex in Mediating Light Control of Development [15].
  • The covalent attachment of ubiquitin to lysine residues of targeted proteins is a signal for the recognition and rapid degradation by the proteasome, a large multi-subunit protease [16].
  • Our results are consistent with the idea that targets of miRNAs encompass a wide range of transcripts, including those for F-box factors, ubiquitin conjugases, Leucine-rich repeat proteins, and metabolic enzymes, and that regulation by miRNAs might be widespread in the genome [17].
 

Physical interactions of UBQ6

  • Here, we demonstrate that COP10 interacts with ubiquitin-conjugating enzymes (E2s) in vivo, and can enhance their activity in vitro, an activity distinct from previous characterized UEVs such as MMS2 and UEV1 [18].
 

Regulatory relationships of UBQ6

  • To examine the efficacy of this cellular site, oat phytochrome A was also expressed using Arabidopsis chlorophyll a/b-binding protein (CAB) and the Arabidopsis ubiquitin (UBQ1) promoters [19].
  • Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes [18].
  • Here we show that CIP8 promotes ubiquitin attachment to HY5 in E2-dependent fashion in vitro [20].
  • Likewise, the fact that ATL2 and other members of the ATL family are activated in eca mutants links the induction of this putative class of ubiquitin ligases to plant defense signaling pathways [21].
  • SIR1 is predicted to encode a protein composed of a ubiquitin-activating enzyme E1-like domain and a Rhodanese-like domain homologous to that of prolyl isomerase [22].
 

Other interactions of UBQ6

 

Analytical, diagnostic and therapeutic context of UBQ6

References

  1. Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination enzymes of Arabidopsis. Kraft, E., Stone, S.L., Ma, L., Su, N., Gao, Y., Lau, O.S., Deng, X.W., Callis, J. Plant Physiol. (2005) [Pubmed]
  2. Characterization of the structure and transcription of an ubiquitin fusion gene from maize. Chen, K.Q., Rubenstein, I. Gene (1991) [Pubmed]
  3. Modulation of F1 hybrid stature without altering parent plants through trans-activated expression of a mutated rice GAI homologue. Su, N., Sullivan, J.A., Deng, X.W. Plant Biotechnol. J. (2005) [Pubmed]
  4. Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Guo, H., Ecker, J.R. Cell (2003) [Pubmed]
  5. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Nelson, D.C., Lasswell, J., Rogg, L.E., Cohen, M.A., Bartel, B. Cell (2000) [Pubmed]
  6. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Xie, Q., Guo, H.S., Dallman, G., Fang, S., Weissman, A.M., Chua, N.H. Nature (2002) [Pubmed]
  7. Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Leyser, H.M., Lincoln, C.A., Timpte, C., Lammer, D., Turner, J., Estelle, M. Nature (1993) [Pubmed]
  8. Recent stable insertion of mitochondrial DNA into an Arabidopsis polyubiquitin gene by nonhomologous recombination. Sun, C.W., Callis, J. Plant Cell (1993) [Pubmed]
  9. Characterization of a polyubiquitin gene from Arabidopsis thaliana. Burke, T.J., Callis, J., Vierstra, R.D. Mol. Gen. Genet. (1988) [Pubmed]
  10. There's the rub: a novel ubiquitin-like modification linked to cell cycle regulation. Hochstrasser, M. Genes Dev. (1998) [Pubmed]
  11. Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants. Angot, A., Peeters, N., Lechner, E., Vailleau, F., Baud, C., Gentzbittel, L., Sartorel, E., Genschik, P., Boucher, C., Genin, S. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  12. Isolation of a ubiquitin-like (UBL5) gene from a screen identifying highly expressed and conserved iris genes. Friedman, J.S., Koop, B.F., Raymond, V., Walter, M.A. Genomics (2001) [Pubmed]
  13. AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Lopez-Molina, L., Mongrand, S., Kinoshita, N., Chua, N.H. Genes Dev. (2003) [Pubmed]
  14. The COP9 signalosome interacts physically with SCF COI1 and modulates jasmonate responses. Feng, S., Ma, L., Wang, X., Xie, D., Dinesh-Kumar, S.P., Wei, N., Deng, X.W. Plant Cell (2003) [Pubmed]
  15. Arabidopsis CULLIN4 Forms an E3 Ubiquitin Ligase with RBX1 and the CDD Complex in Mediating Light Control of Development. Chen, H., Shen, Y., Tang, X., Yu, L., Wang, J., Guo, L., Zhang, Y., Zhang, H., Feng, S., Strickland, E., Zheng, N., Deng, X.W. Plant Cell (2006) [Pubmed]
  16. Proteasome-dependent degradation of the human estrogen receptor. Nawaz, Z., Lonard, D.M., Dennis, A.P., Smith, C.L., O'Malley, B.W. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  17. Computational prediction of miRNAs in Arabidopsis thaliana. Adai, A., Johnson, C., Mlotshwa, S., Archer-Evans, S., Manocha, V., Vance, V., Sundaresan, V. Genome Res. (2005) [Pubmed]
  18. Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes. Yanagawa, Y., Sullivan, J.A., Komatsu, S., Gusmaroli, G., Suzuki, G., Yin, J., Ishibashi, T., Saijo, Y., Rubio, V., Kimura, S., Wang, J., Deng, X.W. Genes Dev. (2004) [Pubmed]
  19. Phytochrome A overexpression in transgenic tobacco. Correlation of dwarf phenotype with high concentrations of phytochrome in vascular tissue and attenuated gibberellin levels. Jordan, E.T., Hatfield, P.M., Hondred, D., Talon, M., Zeevaart, J.A., Vierstra, R.D. Plant Physiol. (1995) [Pubmed]
  20. Biochemical evidence for ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8). Hardtke, C.S., Okamoto, H., Stoop-Myer, C., Deng, X.W. Plant J. (2002) [Pubmed]
  21. Isolation and gene expression analysis of Arabidopsis thaliana mutants with constitutive expression of ATL2, an early elicitor-response RING-H2 zinc-finger gene. Serrano, M., Guzmán, P. Genetics (2004) [Pubmed]
  22. SIR1, an upstream component in auxin signaling identified by chemical genetics. Zhao, Y., Dai, X., Blackwell, H.E., Schreiber, S.L., Chory, J. Science (2003) [Pubmed]
  23. Ubiquitin extension proteins of Arabidopsis thaliana. Structure, localization, and expression of their promoters in transgenic tobacco. Callis, J., Raasch, J.A., Vierstra, R.D. J. Biol. Chem. (1990) [Pubmed]
  24. The ubiquitin-related protein RUB1 and auxin response in Arabidopsis. Pozo, J.C., Timpte, C., Tan, S., Callis, J., Estelle, M. Science (1998) [Pubmed]
  25. Arabidopsis COP10 is a ubiquitin-conjugating enzyme variant that acts together with COP1 and the COP9 signalosome in repressing photomorphogenesis. Suzuki, G., Yanagawa, Y., Kwok, S.F., Matsui, M., Deng, X.W. Genes Dev. (2002) [Pubmed]
  26. CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis. Oravecz, A., Baumann, A., Máté, Z., Brzezinska, A., Molinier, J., Oakeley, E.J., Adám, E., Schäfer, E., Nagy, F., Ulm, R. Plant Cell (2006) [Pubmed]
  27. The E3 ubiquitin ligase BIG BROTHER controls arabidopsis organ size in a dosage-dependent manner. Disch, S., Anastasiou, E., Sharma, V.K., Laux, T., Fletcher, J.C., Lenhard, M. Curr. Biol. (2006) [Pubmed]
  28. Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in arabidopsis. Yoo, J.H., Park, C.Y., Kim, J.C., Heo, W.D., Cheong, M.S., Park, H.C., Kim, M.C., Moon, B.C., Choi, M.S., Kang, Y.H., Lee, J.H., Kim, H.S., Lee, S.M., Yoon, H.W., Lim, C.O., Yun, D.J., Lee, S.Y., Chung, W.S., Cho, M.J. J. Biol. Chem. (2005) [Pubmed]
  29. The cDNA for the ubiquitin-52-amino-acid fusion protein from rat encodes a previously unidentified 60 S ribosomal subunit protein. Redman, K.L., Burris, G.W. Biochem. J. (1996) [Pubmed]
 
WikiGenes - Universities