The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inactivation of the antibacterial activity of iodine potassium iodide and chlorhexidine digluconate against Enterococcus faecalis by dentin, dentin matrix, type-I collagen, and heat-killed microbial whole cells.

The antibacterial activity of chlorhexidine digluconate and iodine potassium iodide on Enterococcus faecalis A197A was tested in the presence of dentin, dentin matrix, dentin pretreated by EDTA and citric acid, collagen, and heat-killed cells of Enterococcus faecalis and Candida albicans. Medications were preincubated for 1 h with each of the potential inhibitors and tested for their antibacterial activity against E. faecalis, strain A197A. Surviving bacteria were sampled after 1 and 24 h of incubation. Dentin matrix and heat-killed microbial cells were the most effective inhibitors of chlorhexidine, whereas dentin pretreated by citric acid or EDTA showed only slight inhibition. Dentin and skin collagen showed some inhibition at 1 h but not after 24 h. Iodine potassium iodide was effectively inhibited by dentin, dentin matrix, and heat-killed microbial cells. Skin collagen and dentin pretreated by EDTA or by citric acid showed little or no inhibitory effect on iodine potassium iodide. Different components of dentin are responsible for the divergent patterns of inhibition of the antibacterial activity of chlorhexidine digluconate and iodine potassium iodide. Chemical treatment of dentin before applying the medication into the root canal may alter the antibacterial effect of the medication.[1]

References

 
WikiGenes - Universities