The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Dental Pulp Cavity

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Dental Pulp Cavity


High impact information on Dental Pulp Cavity

  • Herein, we report the generation of Dspp-null mice that develop tooth defects similar to human dentinogenesis imperfecta III with enlarged pulp chambers, increased width of predentin zone, hypomineralization, and pulp exposure [6].
  • Dental abnormalities included root stunting, microdontia, hypodontia, taurodontia (enlarged pulp chambers), and over-retention of primary teeth [7].
  • The results demonstrated that after infection, the proportion of the root canal flora represented by the four pathogens was almost identical in both groups (39.9 and 42.2% for RAG-2 and immunocompetent control mice, respectively) [8].
  • It was found that although tooth size in the FD patients was smaller than normal, the enamel was thicker on the occlusal table, while the pulp chamber was smaller and disproportional to tooth size [9].
  • Prevention of the epoxy resin-based root canal sealers-induced cyclooxygenase-2 expression and cytotoxicity of human osteoblastic cells by various antioxidants [10].

Chemical compound and disease context of Dental Pulp Cavity

  • We reviewed the literature describing cases with anaphylaxis/angioedma caused by formaldehyde in root canal disinfectants and found that about 1/2 of the reported cases developed symptoms over 2 h after dental treatment [4].
  • The inhibition of growth of Streptococcus anginosus (milleri) by three calcium hydroxide sealers--calciobiotic root canal sealer (Hygienic Corporation, Akron, OH), Sealapex (Kerr Division, Sybron Corporation, Romulus, MI), and Apexit (Vivadent, USA, Amherst, NY)--was compared with a zinc oxide-eugenol sealer: Roth (Roth International, Chicago, IL) [11].
  • Cultivable microbial flora associated with persistent periapical disease and coronal leakage after root canal treatment: a preliminary study [12].
  • The aim of this scanning electron microscopic study was to compare the quality and amount of smear layer generated in the apical third of straight root canals by 2 rotary nickel-titanium reamers and 1 rotary steel reamer with different cutting blade designs [13].
  • The root canal of the supernumerary tooth was prepared using the step back technique and copious irrigation with 2.6% sodium hypochlorite [14].

Biological context of Dental Pulp Cavity


Anatomical context of Dental Pulp Cavity


Associations of Dental Pulp Cavity with chemical compounds

  • Given the mechanical and rheological properties of this new DCPD/CaO-based cement, its use as root canal sealing material can be considered as classical calcium hydroxide or ZnO/eugenol-based pastes, without or with a gutta-percha point [24].
  • At 2 weeks, formations of hard tissue, with few cells in the root canals and bone-like tissue in the coronal pulp chamber, were noted [25].
  • The mutagenic potential of 12 commercially available dental cements and of two 'pure substances' (zinc oxide and eugenol) used in root canal filling were examined [26].
  • Factors that induce GSH synthesis may appear useful in preventing cell damage mediated by epoxy resin-based root canal sealers [10].
  • Root canal sealers containing formaldehyde and bisphenol A diglyether proved to be not only cytotoxic but also genotoxic [27].

Gene context of Dental Pulp Cavity


Analytical, diagnostic and therapeutic context of Dental Pulp Cavity


  1. Tooth ultrastructure of late triassic Haramiyidae. Frank, R.M., Sigogneau-Russell, D., Voegel, J.C. J. Dent. Res. (1984) [Pubmed]
  2. Evaluation of dentin root canal permeability after instrumentation and Er:YAG laser application. Pecora, J.D., Brugnera-Júnior, A., Cussioli, A.L., Zanin, F., Silva, R. Lasers in surgery and medicine. (2000) [Pubmed]
  3. Detection of Filifactor alocis in endodontic infections associated with different forms of periradicular diseases. Siqueira, J.F., Rôças, I.N. Oral Microbiol. Immunol. (2003) [Pubmed]
  4. Anaphylaxis due to formaldehyde released from root-canal disinfectant. Kunisada, M., Adachi, A., Asano, H., Horikawa, T. Contact Derm. (2002) [Pubmed]
  5. Contact urticaria from formaldehyde in a root-canal dental paste. el Sayed, F., Seite-Bellezza, D., Sans, B., Bayle-Lebey, P., Marguery, M.C., Bazex, J. Contact Derm. (1995) [Pubmed]
  6. Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type III. Sreenath, T., Thyagarajan, T., Hall, B., Longenecker, G., D'Souza, R., Hong, S., Wright, J.T., MacDougall, M., Sauk, J., Kulkarni, A.B. J. Biol. Chem. (2003) [Pubmed]
  7. Dental abnormalities in children treated for acute lymphoblastic leukemia. Kaste, S.C., Hopkins, K.P., Jones, D., Crom, D., Greenwald, C.A., Santana, V.M. Leukemia (1997) [Pubmed]
  8. Increased susceptibility of RAG-2 SCID mice to dissemination of endodontic infections. Teles, R., Wang, C.Y., Stashenko, P. Infect. Immun. (1997) [Pubmed]
  9. Abnormal enamel and pulp dimensions in familial dysautonomia. Mass, E., Zilberman, U., Gadoth, N. J. Dent. Res. (1996) [Pubmed]
  10. Prevention of the epoxy resin-based root canal sealers-induced cyclooxygenase-2 expression and cytotoxicity of human osteoblastic cells by various antioxidants. Huang, F.M., Chang, Y.C. Biomaterials (2005) [Pubmed]
  11. Growth inhibition of Streptococcus anginosus (milleri) by three calcium hydroxide sealers and one zinc oxide-eugenol sealer. Mickel, A.K., Wright, E.R. Journal of endodontics. (1999) [Pubmed]
  12. Cultivable microbial flora associated with persistent periapical disease and coronal leakage after root canal treatment: a preliminary study. Adib, V., Spratt, D., Ng, Y.L., Gulabivala, K. International endodontic journal. (2004) [Pubmed]
  13. Smear layer production by 3 rotary reamers with different cutting blade designs in straight root canals: a scanning electron microscopic study. Jeon, I.S., Spångberg, L.S., Yoon, T.C., Kazemi, R.B., Kum, K.Y. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics. (2003) [Pubmed]
  14. Endodontic treatment of a supernumerary tooth fused to a mandibular second molar: a case report. Ghoddusi, J., Zarei, M., Jafarzadeh, H. Journal of oral science. (2006) [Pubmed]
  15. Antibody formation to dog pulp tissue altered by eugenol within the root canal. Block, R.M., Lewis, R.D., Sheats, J.B., Burke, S.G. Journal of endodontics. (1978) [Pubmed]
  16. Short vs. long-term calcium hydroxide treatment of established inflammatory root resorption in replanted dog teeth. Trope, M., Moshonov, J., Nissan, R., Buxt, P., Yesilsoy, C. Endodontics & dental traumatology. (1995) [Pubmed]
  17. Susceptibility of a polycaprolactone-based root canal filling material to degradation. II. Gravimetric evaluation of enzymatic hydrolysis. Tay, F.R., Pashley, D.H., Yiu, C.K., Yau, J.Y., Yiu-fai, M., Loushine, R.J., Weller, R.N., Kimbrough, W.F., King, N.M. Journal of endodontics. (2005) [Pubmed]
  18. Rapid sterilization of gutta-percha cones with glutaraldehyde. Cardoso, C.L., Kotaka, C.R., Guilhermetti, M., Hidalgo, M.M. Journal of endodontics. (1998) [Pubmed]
  19. Growth of the masseter muscle in rhesus monkeys (Macaca mulatta). Carlson, D.S. Am. J. Phys. Anthropol. (1983) [Pubmed]
  20. Fate of 14C-labelled dimethylpolysiloxane (silicone oil) in a root canal filling material embedded in rat subcutaneous tissues. Kawakami, T., Nakakamura, C., Hasegawa, H., Eda, S. Dental materials : official publication of the Academy of Dental Materials. (1987) [Pubmed]
  21. The effects of intracanal medicaments, fillers, and sealers on the attachment of human gingival fibroblasts to an exposed dentin surface free of a smear layer. Breault, L.G., Schuster, G.S., Billman, M.A., Hanson, B.S., Kudryk, V.L., Pashley, D.H., Runner, R.R., McPherson, J.C. J. Periodontol. (1995) [Pubmed]
  22. The role of lipopolysaccharide in infectious bone resorption of periapical lesion. Hong, C.Y., Lin, S.K., Kok, S.H., Cheng, S.J., Lee, M.S., Wang, T.M., Chen, C.S., Lin, L.D., Wang, J.S. J. Oral Pathol. Med. (2004) [Pubmed]
  23. Effect of NaOCl treatment on bond strength between indirect resin core-buildup and dentin. Inoue, S., Murata, Y., Sano, H., Kashiwada, T. Dental materials journal. (2002) [Pubmed]
  24. Study of a hydraulic dicalcium phosphate dihydrate/calcium oxide-based cement for dental applications. el-Briak, H., Durand, D., Nurit, J., Munier, S., Pauvert, B., Boudeville, P. J. Biomed. Mater. Res. (2002) [Pubmed]
  25. An immunohistochemical study on hard tissue formation in a subcutaneously transplanted rat molar. Hosoya, A., Yoshiba, K., Yoshiba, N., Hoshi, K., Iwaku, M., Ozawa, H. Histochem. Cell Biol. (2003) [Pubmed]
  26. Mutagenic potential of root canal sealers: evaluation through Ames testing. Stea, S., Savarino, L., Ciapetti, G., Cenni, E., Stea, S., Trotta, F., Morozzi, G., Pizzoferrato, A. J. Biomed. Mater. Res. (1994) [Pubmed]
  27. Assessment of the genotoxicity of resin and zinc-oxide eugenol-based root canal sealers using an in vitro mammalian test system. Tai, K.W., Huang, F.M., Huang, M.S., Chang, Y.C. J. Biomed. Mater. Res. (2002) [Pubmed]
  28. Balance of interleukin-1 beta and interleukin-1 receptor antagonist in human periapical lesions. Shimauchi, H., Takayama, S., Imai-Tanaka, T., Okada, H. Journal of endodontics. (1998) [Pubmed]
  29. Protective effect of NAC on formaldehyde-containing-ZOE-based root-canal-sealers-induced cyclooxygenase-2 expression and cytotoxicity in human osteoblastic cells. Huang, F.M., Chou, L.S., Chou, M.Y., Chang, Y.C. Journal of biomedical materials research. Part B, Applied biomaterials. (2005) [Pubmed]
  30. Matrix metalloproteinase-8 (MMP-8) in pulpal and periapical inflammation and periapical root-canal exudates. Wahlgren, J., Salo, T., Teronen, O., Luoto, H., Sorsa, T., Tjäderhane, L. International endodontic journal. (2002) [Pubmed]
  31. Induction of interleukin-6 and interleukin-8 gene expression by root canal sealers in human osteoblastic cells. Huang, F.M., Tsai, C.H., Yang, S.F., Chang, Y.C. Journal of endodontics. (2005) [Pubmed]
  32. EDTA inhibits in vitro substrate adherence capacity of macrophages: endodontic implications. Segura, J.J., Calvo, J.R., Guerrero, J.M., Jimenez-Planas, A., Sampedro, C., Llamas, R. Journal of endodontics. (1997) [Pubmed]
  33. Histopathological observations of periapical repair in teeth with radiolucent areas submitted to two different methods of root canal treatment. Leonardo, M.R., Almeida, W.A., da Silva, L.A., Utrilla, L.S. Journal of endodontics. (1995) [Pubmed]
  34. Systemic distribution of 14C-labeled formaldehyde applied in the root canal following pulpectomy. Hata, G.I., Nishikawa, I., Kawazoe, S., Toda, T. Journal of endodontics. (1989) [Pubmed]
  35. Vitality preservation of an anomalous maxillary central incisor after endodontic therapy. Kaufman, A.Y., Kaffe, I., Littner, M.M. Oral Surg. Oral Med. Oral Pathol. (1984) [Pubmed]
  36. Application of biologically-oriented dentin bonding principles to the use of endodontic irrigants. García-Godoy, F., Loushine, R.J., Itthagarun, A., Weller, R.N., Murray, P.E., Feilzer, A.J., Pashley, D.H., Tay, F.R. American journal of dentistry. (2005) [Pubmed]
WikiGenes - Universities