The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Novel effects of neutrophil-derived proteinase 3 and elastase on the vascular endothelium involve in vivo cleavage of NF-kappaB and proapoptotic changes in JNK, ERK, and p38 MAPK signaling pathways.

Leukocyte-derived proteases have long been considered simply degradative. However, emerging data raise possibilities of a complex and specific biologic role for these proteases in substrate processing and in signaling pathways within cells. This study reports that the release of neutrophilic and monocytic proteases, such as proteinase 3 (PR3) and human neutrophil elastase (HNE), can result in their entry into endothelial cells coincident with the activation of proapoptotic-signaling events through ERK, JNK, and p38 MAPK. Inhibition of JNK blocked PR3-induced apoptosis, and inhibition of p38 MAPK blocked PR3- and HNE-induced apoptosis, indicating that these pathways are required for activation of apoptosis. It is here shown that protease entry results in direct cleavage of p65 NF-kappaB in the N-terminal region by PR3 and in the C-terminal region by HNE. This cleavage results in diminished transcriptional activity by NF-kappaB as demonstrated by diminished levels of TNF-alpha- induced IL-8 message in the presence of PR3 or HNE. Inhibition of caspases did not block the cleavage of p65 NF-kappaB, and sequence analysis showed that the PR3 and HNE cleavage sites are unique with respect to reported caspase sites. The data demonstrate that PR3 and HNE have specific, fundamental roles in endothelial responses during inflammation. Upon entry, they can usurp the cell's control of its own fate by directly intervening into caspase cascades. This provides a unique mechanism of crosstalk between leukocytes and endothelial cells at sites of inflammation that impacts both cytokine networks and cell viability.[1]

References

  1. Novel effects of neutrophil-derived proteinase 3 and elastase on the vascular endothelium involve in vivo cleavage of NF-kappaB and proapoptotic changes in JNK, ERK, and p38 MAPK signaling pathways. Preston, G.A., Zarella, C.S., Pendergraft, W.F., Rudolph, E.H., Yang, J.J., Sekura, S.B., Jennette, J.C., Falk, R.J. J. Am. Soc. Nephrol. (2002) [Pubmed]
 
WikiGenes - Universities