The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

DNA replication arrest in XP variant cells after UV exposure is diverted into an Mre11-dependent recombination pathway by the kinase inhibitor wortmannin.

Ultraviolet (UV) irradiation produces DNA photoproducts that are blocks to DNA replication by normal replicative polymerases. A specialized, damage-specific, distributive polymerase, Pol H or Pol h, that is the product of the hRad30A gene, is required for replication past these photoproducts. This polymerase is absent from XP variant (XP-V) cells that must employ other mechanisms to negotiate blocks to DNA replication. These mechanisms include the use of alternative polymerases or recombination between sister chromatids. Replication forks arrested by UV damage in virus transformed XP-V cells degrade into DNA double strand breaks that are sites for recombination, but in normal cells arrested forks may be protected from degradation by p53 protein. These breaks are sites for binding a protein complex, hMre11/hRad50/Nbs1, that colocalizes with H2AX and PCNA, and can be visualized as immunofluorescent foci. The protein complexes need phosphorylation to activate their DNA binding capacity. Incubation of UV irradiated XP-V cells with the irreversible kinase inhibitor wortmannin, however, increased the yield of Mre11 focus-positive cells. One interpretation of this observation is that two classes of kinases are involved after UV irradiation. One would be a wortmannin-resistant kinase that phosphorylates the Mre11 complex. The other would be a wortmannin-sensitive kinase that phosphorylates and activates the p53/large T in SV40 transformed XP-V cells. The sensitive class corresponds to the PI3-kinases of ATM, ATR, and DNA-PK, but the resistant class remains to be identified. Alternatively, the elevated yield of Mre11 foci positive cells following wortmannin treatment may reflect an overall perturbation to the signaling cascades regulated by wortmannin-sensitive PI3 related kinases. In this scenario, wortmannin could compromise damage inducible-signaling pathways that maintain the stability of stalled forks, resulting in a further destabilization of stalled forks that then degrade, with the formation of DNA double strand breaks.[1]

References

 
WikiGenes - Universities