The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

NBN  -  nibrin

Homo sapiens

Synonyms: AT-V1, AT-V2, ATV, Cell cycle regulatory protein p95, NBS, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of NBN

 

Psychiatry related information on NBN

 

High impact information on NBN

 

Chemical compound and disease context of NBN

 

Biological context of NBN

 

Anatomical context of NBN

 

Associations of NBN with chemical compounds

  • We also show that ATM physically interacts with and phosphorylates nibrin on serine 343 both in vivo and in vitro [18].
  • Following HU-induced replication arrest, NBS and ATR-Seckel cells show similarly impaired G2/M checkpoint arrest and an impaired ability to restart DNA synthesis at stalled replication forks [2].
  • The NH(2) terminus of NBS1, specifically the BRCA1 COOH-terminal domain, is required for this activity [3].
  • Our results showed that Mre11 went through cell cycle-dependent phosphorylation upon sodium arsenite treatment and this post-translational modification required NBS1 but not ATM [25].
  • Herein, we demonstrate that the chemotherapeutic enediyne antibiotic neocarzinostatin induced Rad51, but not NBS1, nuclear focus formation in a cell- cycle-dependent manner [26].
  • Inhibition of Nbs1 phosphorylation by S343A mutant enhanced the antileukemia effect of the combination of imatinib and genotoxic agent [27].
 

Physical interactions of NBN

  • The MRN complex is also involved in telomere maintenance, as demonstrated by the shortened telomeres in NBS primary human fibroblasts and the association of NBS1 with the telomere-binding protein TRF2 [23].
  • Also recent findings that a protein associated with the MRE11/RAD50 repair complex is mutated in Nijmegen breakage syndrome characterized by increased cancer incidence and ionizing radiation sensitivity strongly support this idea [28].
  • Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention [29].
  • These findings suggest that the Nbs1/Mre11/Rad50 complex is not involved in coding end processing of V(D)J recombination [30].
  • ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1 [31].
 

Enzymatic interactions of NBN

  • Nijmegen breakage syndrome (NBS) cells stably transfected with an empty vector or with S343A-NBS1 or S278A/S343A phospho-mutants were unable to hyperphosphorylate RPA in DNA-damage-associated foci following HU treatment [32].
 

Regulatory relationships of NBN

 

Other interactions of NBN

 

Analytical, diagnostic and therapeutic context of NBN

References

  1. Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Difilippantonio, S., Celeste, A., Fernandez-Capetillo, O., Chen, H.T., Reina San Martin, B., Van Laethem, F., Yang, Y.P., Petukhova, G.V., Eckhaus, M., Feigenbaum, L., Manova, K., Kruhlak, M., Camerini-Otero, R.D., Sharan, S., Nussenzweig, M., Nussenzweig, A. Nat. Cell Biol. (2005) [Pubmed]
  2. Nbs1 is required for ATR-dependent phosphorylation events. Stiff, T., Reis, C., Alderton, G.K., Woodbine, L., O'Driscoll, M., Jeggo, P.A. EMBO J. (2005) [Pubmed]
  3. Assembly of functional ALT-associated promyelocytic leukemia bodies requires Nijmegen Breakage Syndrome 1. Wu, G., Jiang, X., Lee, W.H., Chen, P.L. Cancer Res. (2003) [Pubmed]
  4. NBS1 and TRF1 colocalize at promyelocytic leukemia bodies during late S/G2 phases in immortalized telomerase-negative cells. Implication of NBS1 in alternative lengthening of telomeres. Wu, G., Lee, W.H., Chen, P.L. J. Biol. Chem. (2000) [Pubmed]
  5. New mutations and protein variants of NBS1 are identified in cancer cell lines. Tessitore, A., Biordi, L., Flati, V., Toniato, E., Marchetti, P., Ricevuto, E., Ficorella, C., Scotto, L., Giannini, G., Frati, L., Masciocchi, C., Tombolini, V., Gulino, A., Martinotti, S. Genes Chromosomes Cancer (2003) [Pubmed]
  6. Overexpression of NBS1 induces epithelial-mesenchymal transition and co-expression of NBS1 and Snail predicts metastasis of head and neck cancer. Yang, M.H., Chang, S.Y., Chiou, S.H., Liu, C.J., Chi, C.W., Chen, P.M., Teng, S.C., Wu, K.J. Oncogene (2007) [Pubmed]
  7. Mutations in the Nijmegen breakage syndrome gene in medulloblastomas. Huang, J., Grotzer, M.A., Watanabe, T., Hewer, E., Pietsch, T., Rutkowski, S., Ohgaki, H. Clin. Cancer Res. (2008) [Pubmed]
  8. Unusual T cell clones in a patient with Nijmegen breakage syndrome. Stoppa-Lyonnet, D., Girault, D., LeDeist, F., Aurias, A. J. Med. Genet. (1992) [Pubmed]
  9. Long-term developmental outcomes of children identified through a newborn screening program with a metabolic or endocrine disorder: a population-based approach. Van Naarden Braun, K., Yeargin-Allsopp, M., Schendel, D., Fernhoff, P. J. Pediatr. (2003) [Pubmed]
  10. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. O'Driscoll, M., Ruiz-Perez, V.L., Woods, C.G., Jeggo, P.A., Goodship, J.A. Nat. Genet. (2003) [Pubmed]
  11. The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Falck, J., Petrini, J.H., Williams, B.R., Lukas, J., Bartek, J. Nat. Genet. (2002) [Pubmed]
  12. An alternative mode of translation permits production of a variant NBS1 protein from the common Nijmegen breakage syndrome allele. Maser, R.S., Zinkel, R., Petrini, J.H. Nat. Genet. (2001) [Pubmed]
  13. Impaired elimination of DNA double-strand break-containing lymphocytes in ataxia telangiectasia and Nijmegen breakage syndrome. Porcedda, P., Turinetto, V., Lantelme, E., Fontanella, E., Chrzanowska, K., Ragona, R., De Marchi, M., Delia, D., Giachino, C. DNA Repair (Amst.) (2006) [Pubmed]
  14. DNA damage-induced cell cycle regulation and function of novel chk2 phosphoresidues. Buscemi, G., Carlessi, L., Zannini, L., Lisanti, S., Fontanella, E., Canevari, S., Delia, D. Mol. Cell. Biol. (2006) [Pubmed]
  15. Mutant Nbs1 enhances cisplatin-induced DNA damage and cytotoxicity in head and neck cancer. Tran, H.M., Shi, G., Li, G., Carney, J.P., O'Malley, B., Li, D. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. (2004) [Pubmed]
  16. Controlled trial of oligofructose in the management of irritable bowel syndrome. Hunter, J.O., Tuffnell, Q., Lee, A.J. J. Nutr. (1999) [Pubmed]
  17. Expression of a 95 kDa membrane protein is associated with low daunorubicin accumulation in leukaemic blast cells. Doyle, L.A., Ross, D.D., Sridhara, R., Fojo, A.T., Kaufmann, S.H., Lee, E.J., Schiffer, C.A. Br. J. Cancer (1995) [Pubmed]
  18. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Gatei, M., Young, D., Cerosaletti, K.M., Desai-Mehta, A., Spring, K., Kozlov, S., Lavin, M.F., Gatti, R.A., Concannon, P., Khanna, K. Nat. Genet. (2000) [Pubmed]
  19. The yeast Xrs2 complex functions in S phase checkpoint regulation. D'Amours, D., Jackson, S.P. Genes Dev. (2001) [Pubmed]
  20. Nibrin functions in Ig class-switch recombination. Kracker, S., Bergmann, Y., Demuth, I., Frappart, P.O., Hildebrand, G., Christine, R., Wang, Z.Q., Sperling, K., Digweed, M., Radbruch, A. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  21. An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage. Heffernan, T.P., Simpson, D.A., Frank, A.R., Heinloth, A.N., Paules, R.S., Cordeiro-Stone, M., Kaufmann, W.K. Mol. Cell. Biol. (2002) [Pubmed]
  22. NBS1 knockdown by small interfering RNA increases ionizing radiation mutagenesis and telomere association in human cells. Zhang, Y., Lim, C.U., Williams, E.S., Zhou, J., Zhang, Q., Fox, M.H., Bailey, S.M., Liber, H.L. Cancer Res. (2005) [Pubmed]
  23. Telomere instability in a human tumor cell line expressing NBS1 with mutations at sites phosphorylated by ATM. Bai, Y., Murnane, J.P. Mol. Cancer Res. (2003) [Pubmed]
  24. Overexpression of NBS1 contributes to transformation through the activation of phosphatidylinositol 3-kinase/Akt. Chen, Y.C., Su, Y.N., Chou, P.C., Chiang, W.C., Chang, M.C., Wang, L.S., Teng, S.C., Wu, K.J. J. Biol. Chem. (2005) [Pubmed]
  25. Arsenic-induced Mre11 phosphorylation is cell cycle-dependent and defective in NBS cells. Yuan, S.S., Su, J.H., Hou, M.F., Yang, F.W., Zhao, S., Lee, E.Y. DNA Repair (Amst.) (2002) [Pubmed]
  26. Neocarzinostatin-induced Rad51 nuclear focus formation is cell cycle regulated and aberrant in AT cells. Yuan, S.S., Yang, Y.K., Chen, H.W., Chung, Y.F., Chang, H.L., Su, J.H. Toxicol. Appl. Pharmacol. (2003) [Pubmed]
  27. Enhanced phosphorylation of Nbs1, a member of DNA repair/checkpoint complex Mre11-RAD50-Nbs1, can be targeted to increase the efficacy of imatinib mesylate against BCR/ABL-positive leukemia cells. Rink, L., Slupianek, A., Stoklosa, T., Nieborowska-Skorska, M., Urbanska, K., Seferynska, I., Reiss, K., Skorski, T. Blood (2007) [Pubmed]
  28. Mutations in the RAD54 recombination gene in primary cancers. Matsuda, M., Miyagawa, K., Takahashi, M., Fukuda, T., Kataoka, T., Asahara, T., Inui, H., Watatani, M., Yasutomi, M., Kamada, N., Dohi, K., Kamiya, K. Oncogene (1999) [Pubmed]
  29. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. Lukas, C., Melander, F., Stucki, M., Falck, J., Bekker-Jensen, S., Goldberg, M., Lerenthal, Y., Jackson, S.P., Bartek, J., Lukas, J. EMBO J. (2004) [Pubmed]
  30. Normal V(D)J recombination in cells from patients with Nijmegen breakage syndrome. Harfst, E., Cooper, S., Neubauer, S., Distel, L., Grawunder, U. Mol. Immunol. (2000) [Pubmed]
  31. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. You, Z., Chahwan, C., Bailis, J., Hunter, T., Russell, P. Mol. Cell. Biol. (2005) [Pubmed]
  32. NBS1 mediates ATR-dependent RPA hyperphosphorylation following replication-fork stall and collapse. Manthey, K.C., Opiyo, S., Glanzer, J.G., Dimitrova, D., Elliott, J., Oakley, G.G. J. Cell. Sci. (2007) [Pubmed]
  33. Rescue of a telomere length defect of Nijmegen breakage syndrome cells requires NBS and telomerase catalytic subunit. Ranganathan, V., Heine, W.F., Ciccone, D.N., Rudolph, K.L., Wu, X., Chang, S., Hai, H., Ahearn, I.M., Livingston, D.M., Resnick, I., Rosen, F., Seemanova, E., Jarolim, P., DePinho, R.A., Weaver, D.T. Curr. Biol. (2001) [Pubmed]
  34. c-Myc directly regulates the transcription of the NBS1 gene involved in DNA double-strand break repair. Chiang, Y.C., Teng, S.C., Su, Y.N., Hsieh, F.J., Wu, K.J. J. Biol. Chem. (2003) [Pubmed]
  35. Nbs1 promotes ATM dependent phosphorylation events including those required for G1/S arrest. Girard, P.M., Riballo, E., Begg, A.C., Waugh, A., Jeggo, P.A. Oncogene (2002) [Pubmed]
  36. The dispersal of replication proteins after Etoposide treatment requires the cooperation of Nbs1 with the ataxia telangiectasia Rad3-related/Chk1 pathway. Rossi, R., Lidonnici, M.R., Soza, S., Biamonti, G., Montecucco, A. Cancer Res. (2006) [Pubmed]
  37. siRNA targeting NBS1 or XIAP increases radiation sensitivity of human cancer cells independent of TP53 status. Ohnishi, K., Scuric, Z., Schiestl, R.H., Okamoto, N., Takahashi, A., Ohnishi, T. Radiat. Res. (2006) [Pubmed]
  38. SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Yuan, Z., Zhang, X., Sengupta, N., Lane, W.S., Seto, E. Mol. Cell (2007) [Pubmed]
  39. MRE11 mutations and impaired ATM-dependent responses in an Italian family with ataxia-telangiectasia-like disorder. Delia, D., Piane, M., Buscemi, G., Savio, C., Palmeri, S., Lulli, P., Carlessi, L., Fontanella, E., Chessa, L. Hum. Mol. Genet. (2004) [Pubmed]
  40. Chk2 activation dependence on Nbs1 after DNA damage. Buscemi, G., Savio, C., Zannini, L., Miccichè, F., Masnada, D., Nakanishi, M., Tauchi, H., Komatsu, K., Mizutani, S., Khanna, K., Chen, P., Concannon, P., Chessa, L., Delia, D. Mol. Cell. Biol. (2001) [Pubmed]
  41. E2F1 induces MRN foci formation and a cell cycle checkpoint response in human fibroblasts. Frame, F.M., Rogoff, H.A., Pickering, M.T., Cress, W.D., Kowalik, T.F. Oncogene (2006) [Pubmed]
  42. Analysis of ataxia-telangiectasia mutated (ATM)- and Nijmegen breakage syndrome (NBS)-regulated gene expression patterns. Jang, E.R., Lee, J.H., Lim, D.S., Lee, J.S. J. Cancer Res. Clin. Oncol. (2004) [Pubmed]
  43. Nibrin forkhead-associated domain and breast cancer C-terminal domain are both required for nuclear focus formation and phosphorylation. Cerosaletti, K.M., Concannon, P. J. Biol. Chem. (2003) [Pubmed]
  44. Sequence analysis of an 800-kb genomic DNA region on chromosome 8q21 that contains the Nijmegen breakage syndrome gene, NBS1. Tauchi, H., Matsuura, S., Isomura, M., Kinjo, T., Nakamura, A., Sakamoto, S., Kondo, N., Endo, S., Komatsu, K., Nakamura, Y. Genomics (1999) [Pubmed]
  45. Immortalization and characterization of Nijmegen Breakage syndrome fibroblasts. Kraakman-van der Zwet, M., Overkamp, W.J., Friedl, A.A., Klein, B., Verhaegh, G.W., Jaspers, N.G., Midro, A.T., Eckardt-Schupp, F., Lohman, P.H., Zdzienicka, M.Z. Mutat. Res. (1999) [Pubmed]
  46. Screening of Nijmegen breakage syndrome 1 mutations in four unrelated families by polymerase chain reaction using sequence-specific primers. Di Masi, A., Antoccia, A., Spadoni, E., Varon-Mateeva, R., Maraschio, P., Tanzarella, C. Genet. Test. (2006) [Pubmed]
 
WikiGenes - Universities