The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Nicotinic acid adenine dinucleotide phosphate mediates Ca2+ signals and contraction in arterial smooth muscle via a two-pool mechanism.

Previous studies of arterial smooth muscle have shown that inositol 1,4,5-trisphosphate (IP3) and cyclic ADP-ribose mobilize Ca2+ from the sarcoplasmic reticulum. In contrast, little is known about Ca2+ mobilization by nicotinic acid adenine dinucleotide phosphate, a pyridine nucleotide derived from beta-NADP+. We show here that intracellular dialysis of nicotinic acid adenine dinucleotide phosphate (NAADP) induces spatially restricted "bursts" of Ca2+ release that initiate a global Ca2+ wave and contraction in pulmonary artery smooth muscle cells. Depletion of sarcoplasmic reticulum Ca2+ stores with thapsigargin and inhibition of ryanodine receptors with ryanodine, respectively, block the global Ca2+ waves by NAADP. Under these conditions, however, localized Ca2+ bursts are still observed. In contrast, xestospongin C, an IP3 receptor antagonist, had no effect on Ca2+ signals by NAADP. We propose that NAADP mobilizes Ca2+ via a 2-pool mechanism, and that initial Ca2+ bursts are amplified by subsequent sarcoplasmic reticulum Ca2+ release via ryanodine receptors but not via IP3 receptors.[1]


WikiGenes - Universities