The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Pharmacology of transmission to gastrointestinal muscle.

The identity of excitatory and inhibitory neurotransmitters is well established. Excitatory motor neurons synthesize and release acetylcholine and tachykinins, which act through postjunctional muscarinic M2 and M3 or tachykinin NK1 and NK2 receptors, respectively, to induce smooth muscle contraction. A residual excitatory component is mediated by ATP acting on P2X1 receptors. Conversely, inhibitory motor neurons express nitric oxide synthase and vasoactive intestinal peptide ( VIP), which together with ATP, induce a coordinated muscle relaxation. The receptors involved in the inhibitory effects of ATP and VIP are unknown. Likewise, the relationships between inhibitory signals triggered by NO and those mediated by VIP need to be clarified. Recent evidence obtained using receptor knockout mice have confirmed the involvement of the above-mentioned excitatory transmitters but have revealed an unexpected complexity in the nitrergic transmission, where the effects of NO are manifested only in the presence of carbon monoxide. Interstitial cells of Cajal (ICC) are being recognized as targets of intestinal motor neurons; therefore, the signaling mechanisms are probably integrated by these cells before being transmitted to smooth muscle. Challenges in future years will be to identify the physiological role of the various excitatory and inhibitory components, and to understand the relative importance of neurotransmitter receptors expressed on ICC and smooth muscle cells.[1]

References

  1. Pharmacology of transmission to gastrointestinal muscle. Lecci, A., Santicioli, P., Maggi, C.A. Current opinion in pharmacology. (2002) [Pubmed]
 
WikiGenes - Universities