Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein.
Bone sialoprotein ( BSP) is a highly modified, anionic phosphoprotein that is expressed almost exclusively in mineralizing connective tissues and has been shown to be a potent nucleator of hydroxyapatite (HA). Two polyglutamic acid (poly[E]) regions, predicted to be in an alpha-helical conformation and located in the amino-terminal half of the molecule, are believed to be responsible for this activity. Using a prokaryotic expression system, full-length rat BSP was expressed and tested for HA nucleating activity in a steady-state agarose gel system. The unmodified protein is less potent than native bone BSP, indicating a role for the post-translational modifications in HA nucleation. Site-directed mutagenesis of the poly[E] regions in full-length BSP was performed, replacing the poly[E] with either polyaspartic acid (poly[D]) or polyalanine (poly[A]) to examine role of charge and conformation, respectively, in HA nucleation. Replacement of single domains with either poly[A] or poly[D] did not alter nucleating activity nor did replacement of both domains with poly[D]. Replacement of both domains with poly[A], however, significantly decreased nucleating activity. In addition, two recombinant peptides, each encompassing one of the two poly[E] domains, were expressed and tested for nucleating activity. Whereas the peptide encompassing the second poly[E] domain was capable of nucleating HA, the first domain peptide showed no activity. The conformation of the wild-type and mutated proteins and peptides were studied by circular dichroism and small angle x-ray scattering, and no secondary structure was evident. These results demonstrate that a sequence of at least eight contiguous glutamic acid residues is required for the nucleation of HA by BSP and that this nucleating "site" is not alpha-helical in conformation.[1]References
- Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein. Tye, C.E., Rattray, K.R., Warner, K.J., Gordon, J.A., Sodek, J., Hunter, G.K., Goldberg, H.A. J. Biol. Chem. (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg