The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Comparative metabolism of N-nitrosopiperidine and N-nitrosopyrrolidine by rat liver and esophageal microsomes and cytochrome P450 2A3.

N-nitrosopiperidine (NPIP) is a potent esophageal carcinogen in rats whereas structurally similar N-nitrosopyrrolidine (NPYR) induces liver, but not esophageal tumors. NPIP is a possible causative agent for human esophageal cancer. Our goal is to explain mechanistically these differing carcinogenic activities in the esophagus. We hypothesize that differences in metabolic activation of these nitrosamines could be one factor accounting for their differing carcinogenicity. alpha-Hydroxylation is the key metabolic activation pathway leading to nitrosamine-induced carcinogenesis. In this study, we examined the alpha-hydroxylation rates of [3,4-(3)H]NPIP and [3,4-(3)H]NPYR by male F344 rat esophageal and liver microsomes. The major alpha-hydroxylation products of NPIP and NPYR, 2-hydroxytetrahydro-2H-pyran (2-OH-THP) and 2-hydroxytetrahydrofuran (2-OH-THF), respectively, were monitored by high performance liquid chromatography with radioflow detection. NPIP or NPYR (4 microM) was incubated with varying concentrations of esophageal microsomes and co-factors. Microsomes converted NPIP to 2-OH-THP with a 40-fold higher velocity than NPYR to 2-OH-THF. Similar results were observed in studies with NPIP and NPYR at substrate concentrations between 4 and 100 micro M. Kinetics of NPIP alpha-hydroxylation were biphasic; K(M) values were 312 +/- 50 and 1600 +/- 312 microM. Expressed cytochrome P450 2A3, found in low levels in rat esophagus, was a good catalyst of NPIP alpha-hydroxylation (K(M) = 61.6 +/- 20.5 microM), but a poor catalyst of NPYR alpha-hydroxylation (K(m) = 1198 +/- 308 micro M). Cytochrome P450 2A3 may play a role in the preferential activation of NPIP observed in rat esophagus. Liver microsomes metabolized NPYR to 2-OH-THF (V(max)/K(M) = 3.23 pmol/min/mg/ microM) as efficiently as NPIP to 2-OH-THP (V(max)/K(M) = 3.80-4.61 pmol/min/mg/ microM). We conclude that rat esophageal microsomes activate NPIP but not NPYR whereas rat liver microsomes activate NPIP and NPYR. These results are consistent with previous findings that tissue-specific activation of nitrosamines contributes to tissue-specific tumor formation.[1]

References

 
WikiGenes - Universities