The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

In vivo identification of inducible phosphoacceptors in the IKKgamma/NEMO subunit of human IkappaB kinase.

Transcription factor NF-kappaB plays a pivotal regulatory role in the genetic programs for cell cycle progression and inflammation. Nuclear translocation of NF-kappaB is controlled by an inducible protein kinase called IKK, which earmarks cytoplasmic inhibitors of NF-kappaB for proteolytic destruction. IKK contains two structurally related catalytic subunits termed IKKalpha and IKKbeta as well as a noncatalytic subunit called IKKgamma/NEMO. Mutations in the X-linked gene encoding IKKgamma can interfere with NF-kappaB signaling and lead to immunodeficiency disease. Although its precise mechanism of action remains unknown, IKKgamma is phosphorylated in concert with the induction of NF-kappaB by the viral oncoprotein Tax and the proinflammatory cytokine tumor necrosis factor alpha (TNF). We now demonstrate that TNF- induced phosphorylation of IKKgamma is blocked in cells deficient for IKKbeta but not IKKalpha. Phosphopeptide-mapping experiments with metabolically radiolabeled cells indicate that IKKbeta phosphorylates human IKKgamma at Ser-31, Ser-43, and Ser-376 following the enforced expression of either the Tax oncoprotein or the type 1 TNF receptor. Inducible phosphorylation of IKKgamma is attenuated following the deletion of its COOH-terminal zinc finger domain (amino acids 397-419), a frequent target for mutations that occur in IKKgamma-associated immunodeficiencies. As such, IKKbeta-mediated phosphorylation of IKKgamma at these specific serine targets may facilitate proper regulation of NF-kappaB signaling in the immune system.[1]

References

  1. In vivo identification of inducible phosphoacceptors in the IKKgamma/NEMO subunit of human IkappaB kinase. Carter, R.S., Pennington, K.N., Ungurait, B.J., Ballard, D.W. J. Biol. Chem. (2003) [Pubmed]
 
WikiGenes - Universities