The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA double-strand breaks induced by mammalian DNA topoisomerase I cleavage complexes.

DNA double-strand breaks originating from diverse causes in eukaryotic cells are accompanied by the formation of phosphorylated H2AX (gammaH2AX) foci. Here we show that gammaH2AX formation is also a cellular response to topoisomerase I cleavage complexes known to induce DNA double-strand breaks during replication. In HCT116 human carcinoma cells exposed to the topoisomerase I inhibitor camptothecin, the resulting gammaH2AX formation can be prevented with the phosphatidylinositol 3-OH kinase-related kinase inhibitor wortmannin; however, in contrast to ionizing radiation, only camptothecin-induced gammaH2AX formation can be prevented with the DNA replication inhibitor aphidicolin and enhanced with the checkpoint abrogator 7-hydroxystaurosporine. This gammaH2AX formation is suppressed in ATR (ataxia telangiectasia and Rad3-related) deficient cells and markedly decreased in DNA-dependent protein kinase-deficient cells but is not abrogated in ataxia telangiectasia cells, indicating that ATR and DNA-dependent protein kinase are the kinases primarily involved in gammaH2AX formation at the sites of replication-mediated DNA double-strand breaks. Mre11- and Nbs1-deficient cells are still able to form gammaH2AX. However, H2AX-/- mouse embryonic fibroblasts exposed to camptothecin fail to form Mre11, Rad50, and Nbs1 foci and are hypersensitive to camptothecin. These results demonstrate a conserved gammaH2AX response for double-strand breaks induced by replication fork collision. gammaH2AX foci are required for recruiting repair and checkpoint protein complexes to the replication break sites.[1]

References

  1. Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA double-strand breaks induced by mammalian DNA topoisomerase I cleavage complexes. Furuta, T., Takemura, H., Liao, Z.Y., Aune, G.J., Redon, C., Sedelnikova, O.A., Pilch, D.R., Rogakou, E.P., Celeste, A., Chen, H.T., Nussenzweig, A., Aladjem, M.I., Bonner, W.M., Pommier, Y. J. Biol. Chem. (2003) [Pubmed]
 
WikiGenes - Universities