The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Altered balance of half-reactions in p-hydroxybenzoate hydroxylase caused by substituting the 2'-carbon of FAD with fluorine.

Apo-p-hydroxybenzoate hydroxylase was reconstituted using 2'-fluoro-2'-deoxy-arabino-FAD, a synthetic flavin in which the hydroxyl of the 2'-center of the ribityl chain was replaced with fluorine in an inverted configuration. The absorbance spectral changes caused by the binding of either p-hydroxybenzoate (pOHB) or 2,4-dihydroxybenzoate (2,4-diOHB) indicated that the isoalloxazine of the artificial flavin adopts the more solvent-exposed "out" conformation rather than the partially buried "in" conformation near the aromatic substrate. In contrast, the flavin of the natural enzyme adopts the in conformation when pOHB is bound. Much of the behavior of the artificial enzyme can be rationalized in light of the preference of the flavin for the out conformation, including the weaker binding of pOHB, the tighter binding of 2,4-diOHB, and the slower reactions involved in the hydroxylation of pOHB and 2,4-diOHB. Particularly noteworthy is the enhancement of the reduction of the flavin by NADPH when pOHB is bound to the active site, consistent with the recent finding that the reaction occurs when the flavin adopts the out conformation (Palfey, B. A., Moran, G. R., Entsch, B., Ballou, D. P., and Massey, V. (1999) Biochemistry 38, 1153-1158). Thus, whereas the change that induces the out conformation is detrimental to the oxidative half-reaction, it improves the reductive half-reaction, showing that the control of the flavin position in p-hydroxybenzoate hydroxylase represents a compromise between the conflicting needs of two chemically disparate half-reactions, and demonstrating that the 2'-hydroxyl of FAD can serve as a critical control element in flavoenzyme catalysis.[1]


WikiGenes - Universities