Prostaglandin D2 synthase inhibits the exaggerated growth phenotype of spontaneously hypertensive rat vascular smooth muscle cells.
Lipocalin-type prostaglandin D2 synthase (L-PGDS) has recently been linked to a variety of pathophysiological cardiovascular conditions including hypertension and diabetes. In this study, we report on the 50% increase in L-PGDS protein expression observed in vascular smooth muscle cells (VSMC) isolated from spontaneously hypertensive rats (SHR). L-PGDS expression also increased 50% upon the differentiation of normotensive control cells (WKY, from Wistar-Kyoto rats). In addition, we demonstrate differential effects of L-PGDS treatment on cell proliferation and apoptosis in VSMCs isolated from SHR versus WKY controls. L-PGDS (50 microg/ml) was able to significantly inhibit VSMC proliferation and DNA synthesis and induce the apoptotic genes bax, bcl-x, and ei24 in SHR but had no effect on WKY cells. Hyperglycemic conditions also had opposite effects, in which increased glucose concentrations (20 mm) resulted in decreased L-PGDS expression in control cells but actually stimulated L-PGDS expression in SHR. Furthermore, we examined the effect of L-PGDS incubation on insulin-stimulated Akt, glycogen synthase kinase-3beta (GSK-3beta), and ERK phosphorylation. Unexpectedly, we found that when WKY cells were pretreated with L-PGDS, insulin could actually induce apoptosis and failed to stimulate Akt/GSK-3beta phosphorylation. Insulin-stimulated ERK phosphorylation was unaffected by L-PGDS pretreatment in both cell lines. We propose that L-PGDS is involved in the balance of VSMC proliferation and apoptosis and in the increased expression observed in the hypertensive state is an attempt to maintain a proper equilibrium between the two processes via the induction of apoptosis and inhibition of cell proliferation.[1]References
- Prostaglandin D2 synthase inhibits the exaggerated growth phenotype of spontaneously hypertensive rat vascular smooth muscle cells. Ragolia, L., Palaia, T., Paric, E., Maesaka, J.K. J. Biol. Chem. (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg