The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs.

Homeostatic chemokines participate in the development of secondary lymphoid organs and later on in the functional organization of these tissues. The development of lymph nodes (LNs) and Peyer's patches depends on the recruitment of CD3- CD4+ interleukin (IL)-7R alpha hi cells to sites of future organ development. CD3- CD4+ IL-7R alpha hi cells express the chemokine receptor CXCR5 and might be attracted by its ligand CXCL13, which is secreted by mesenchymal cells. Mesenchymal cells also secrete CCL19, a ligand for CCR7, yet it is not clear whether CCR7 and CCL19 are important for secondary lymphoid organ development. Analyzing CXCR5-/- CCR7-/- double deficient mice we now show that these mice lack all examined peripheral LNs suggesting a profound role for both receptors in secondary lymphoid organ development. We demonstrate that CD3- CD4+ IL-7R alpha hi cells express CXCR5 as well as CCR7 indicating that both receptors cooperate during an early step of secondary lymphoid organ development. Furthermore, CXCR5-/- CCR7-/- mice display a severely disturbed architecture of mesenteric LN and spleen. Due to an impaired migration of B cells into the white pulp, CXCR5-/- CCR7-/- mice fail to develop B cell follicles but show small clusters of unorganized lymphocytes in the spleen. These data demonstrate a cooperative function of CXCR5 and CCR7 in lymphoid organ organogenesis and organization.[1]

References

  1. Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. Ohl, L., Henning, G., Krautwald, S., Lipp, M., Hardtke, S., Bernhardt, G., Pabst, O., Förster, R. J. Exp. Med. (2003) [Pubmed]
 
WikiGenes - Universities