The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Evaluation of the fluidity and functionality of the renal cortical brush border membrane in experimental diabetes in rats.

The present study was aimed at addressing the effect of hyperglycemia on the renal cortical brush border membrane. The fluidity and the functionality of the renal cortical brush border membrane have been evaluated after 6 weeks of streptozotocin-induced diabetes in rats. Lipid peroxidation and protein oxidation were first performed to confirm a state of oxidative stress. The fluidity of the brush border membrane of diabetic rats decreased significantly by 15.76%. There was an increase in the amount of early (19.39%) and advanced (42.23%) glycation end-products suggesting the accumulation of significant amount of non-enzymic glycation products at 6 weeks of diabetes. Although, the activities of both gamma-glutamyl transpeptidase and alkaline phosphatase of the brush border membrane decreased, that of the latter decreased to a significant extent with an increase in K(m) (81%) and no change in the V(max). A study of the activities of glutathione-dependent antioxidant enzymes in the renal cortical homogenates showed that the activities of glutathione peroxidase and glyoxalase II were altered significantly. Our study seems to suggest that increased free radical generation accompanied by non-enzymic glycation may be responsible for oxidative stress and an increased rigidity of the diabetic brush border membrane. Alkaline phosphatase may thus serve as a potentially useful marker of free radical induced damage to the renal cortical brush border membrane. The results also suggest that enhanced susceptibility to oxidative stress during early stages may be an important factor in the development of secondary complications of diabetes.[1]

References

 
WikiGenes - Universities