The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Association of a F479L variant in the cytosolic phospholipase A2 gene (PLA2G4A) with decreased glucose turnover and oxidation rates in Pima Indians.

Phospholipase A2, Group IVA (PLA2G4A) belongs to the class of cytosolic calcium-dependent phospholipases (cPLA2s) that preferentially cleave arachidonic acid (AA) from membrane glycerophospholipids. AA and AA metabolites play key roles in glucose disposal and insulin secretion. PLA2G4A is located on Chromosome 1q, where a number of groups have reported linkage to type 2 diabetes mellitus. We have screened the PLA2G4A gene and identified a C-->G variant, which predicts a phenylalanine to leucine substitution. In logistic regression analyses adjusted for age, sex, ethnicity, and birth year, we found a trend toward association between this SNP and diabetes [OR=1.53 (0.97-2.40); p=0.06]. Individuals with the variant genotype had lower mean basal endogenous glucose output (1.8+/-0.03 vs. 1.9+/-0.01 mg/kgEMBS/min; p=0.04) and lower mean basal glucose oxidation (1.2+/-0.11 vs. 1.4+/-0.03 mg/kgEMBS/min; p=0.005) compared to individuals with the wild-type genotype. During a low dose insulin infusion, non-diabetic individuals with the variant genotype had a lower mean glucose oxidation (1.9+/-0.11 vs. 2.0+/-0.03 mg/kgEMBS/min; p=0.04) and total glucose turnover rate (2.5+/-0.22 vs. 2.6+/-0.06 mg/kgEMBS/min; p=0.01) compared to subjects with the wild-type genotype. In addition, under basal conditions, individuals with the variant genotype had a higher mean lipid oxidation rate compared to individuals with the wild-type genotype (0.77+/-0.25 vs. 0.67+/-0.23 mg/kgEMBS/min; p=0.02). These results provide evidence supporting a role for the eicosanoid biosynthesis pathway in type 2 diabetes mellitus pathophysiology.[1]


WikiGenes - Universities