The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Synthesis and biological evaluation of novel flavone-8-acetic acid derivatives as reversible inhibitors of aminopeptidase N/CD13.

The cell surface aminopeptidase N (APN/CD13), overexpressed in tumor cells, plays a critical role in angiogenesis. However, potent, selective, and, particularly, noncytotoxic inhibitors ot this protein are lacking, and the present work was undertaken with the aim of developing a new generation of noncytotoxic inhibitors that bind to APN/CD13. In this context, we have synthesized a series of novel flavone-8-acetic acid derivatives. Among the herein described and evaluated compounds, the 2',3-dinitroflavone-8-acetic acid (19b) proved to be the most efficient and exhibited an IC(50) of 25 microM which is 2.5 times higher than that of bestatin (1), the natural known inhibitor of APN/CD13. However, in contrast to bestatin (1), the dinitroflavone 19b did not induce any cytotoxicity to cultured human model cells. The presence of other substituents such as NO(2) or OCH(3) groups at the 3'- or 4'-position of the B phenyl group, or the existence of steric constraints (compounds 24 and 29), did not improve selectivity and potency. The flavone 19b affinity for APN/CD13 is not recovered with other proteases such as matrix metalloproteinase-9 (MMP-9), angiotensin converting enzyme (ACE/CD143), neutral endopeptidase ( NEP/CD10), gamma-glutamyl transpeptidase (CD224), or the serine proteases dipeptidyl peptidase IV ( DPPIV/CD26) or cathepsin G.[1]

References

  1. Synthesis and biological evaluation of novel flavone-8-acetic acid derivatives as reversible inhibitors of aminopeptidase N/CD13. Bauvois, B., Puiffe, M.L., Bongui, J.B., Paillat, S., Monneret, C., Dauzonne, D. J. Med. Chem. (2003) [Pubmed]
 
WikiGenes - Universities