The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Diagnostic and therapeutic approaches in patients with secondary hyperoxaluria.

Secondary hyperoxaluria is due either to increased intestinal oxalate absorption or to excessive dietary oxalate intake. Certain intestinal diseases like short bowel syndrome, chronic inflammatory bowel disease or cystic fibrosis and other malabsorption syndromes are known to increase the risk of secondary hyperoxaluria. Although the urinary oxalate excretion is usually lower than in primary hyperoxaluria, it may still lead to significant morbidity by recurrent urolithiasis or progressive nephrocalcinosis. A clear distinction between primary and secondary hyperoxalurias is important. As correct classification may be difficult, appropriate diagnostic tools are needed to delineate the metabolic background as a basis for optimal treatment. We developed an individual approach for the evaluation of patients with suspected secondary hyperoxaluria. First, 24 h urines are examined repeatedly for lithogenic (e.g. calcium, oxalate, uric acid) and stone-inhibitory (e.g. citrate, magnesium) substances, and the patients are asked to fill in a dietary survey form. Urinary saturation is calculated using the computer based program EQUIL2, and the BONN-Risk-index is determined. The measurement of plasma oxalate and of urinary glycolate helps to distinguish between primary and secondary hyperoxalurias. If secondary hyperoxaluria is suspected, the stool is examined for Oxalobacter formigenes, an intestinal oxalate degrading bacterium, as lack or absence may lead to increased intestinal oxalate absorption. The last diagnostic step is to study the intestinal oxalate absorption using [13C2]oxalate. Depending on the results, various therapeutic options are available: 1) a diet low in oxalate, but normal or high in calcium, 2) a high fluid intake (>1.5 L/m2/d), 3) medications to increase the urinary solubility, 4) specific therapeutic measures in patients with malabsorption syndromes, depending on the underlying pathology, and 5) intestinal recolonization of Oxalobacter formigenes or the treatment with other oxalate degrading bacteria.[1]


  1. Diagnostic and therapeutic approaches in patients with secondary hyperoxaluria. Hoppe, B., Leumann, E., von Unruh, G., Laube, N., Hesse, A. Front. Biosci. (2003) [Pubmed]
WikiGenes - Universities