The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A human transmembrane protein-tyrosine-phosphatase, PTP zeta, is expressed in brain and has an N-terminal receptor domain homologous to carbonic anhydrases.

Protein-tyrosine-phosphatases (PTPases, EC 3.1.3.48) play a crucial role in the regulation of protein tyrosine phosphorylation. Recently, it was found that the PTPase gene family exhibits a large variety of different functional domains associated with the PTPase catalytic domains. In this paper, we report the complete cDNA sequence of a human transmembrane PTPase, PTP zeta, isolated from fetal brain cDNA libraries. The deduced amino acid sequence of human PTP zeta is composed of a putative signal peptide of 19 amino acids, a very large extracellular domain of 1616 amino acids, a transmembrane peptide of 26 amino acids, and a cytoplasmic domain of 653 amino acids. The extracellular portion of human PTP zeta contains two striking structural features: the N-terminal 280-amino acid sequence that is homologous to carbonic anhydrases (carbonate hydro-lyase, EC 4.2.1.1), and a sequence of 1048 amino acids without a cysteine residue. While it is unlikely that the carbonic anhydrase-like domain of PTP zeta has any carbonic anhydrase activity, its three-dimensional structure may be quite similar to that of carbonic anhydrases, a structure that appears ideal for binding a small soluble ligand. The cytoplasmic portion of human PTP zeta contains two repeated PTPase-like domains, which, when expressed in Escherichia coli, had PTPase activity in vitro. Mutational analyses indicate that only the membrane-proximal PTPase domain is catalytically active. Reverse transcription-polymerase chain reaction analyses indicate that human PTP zeta is highly expressed in a glioblastoma cell line.[1]

References

 
WikiGenes - Universities