The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

ACP1  -  acid phosphatase 1, soluble

Homo sapiens

Synonyms: Adipocyte acid phosphatase, LMW-PTP, LMW-PTPase, Low molecular weight cytosolic acid phosphatase, Low molecular weight phosphotyrosine protein phosphatase, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of ACP1


Psychiatry related information on ACP1


High impact information on ACP1

  • In addition, genetic evidence has demonstrated the requirement of the transmembrane PTPase, CD45, for TCR function [10].
  • Though the catalytic domain is only approximately 20% identical to human PTP1B, the Yersinia PTPase contains all of the invariant residues present in eukaryotic PTPases, including the nucleophilic Cys 403 which forms a phosphocysteine intermediate during catalysis [11].
  • Yersinia, the causative bacteria of the bubonic plague and other enteric diseases, secrete an active PTPase, Yop51, that enters and suppresses host immune cells [11].
  • Here we report the isolation of a complementary DNA clone encoding a new form of soluble PTPase, PTP1C [12].
  • PTPase activity may thus directly link growth factor receptors and other signalling proteins through protein-tyrosine phosphorylation [12].

Chemical compound and disease context of ACP1

  • The low molecular weight protein tyrosine phosphatase (ACP1 or LMPTP) is one of the few PTPases with a known genetic polymorphism, and has been proposed to be associated with atopic dermatitis in a small sample from an Italian population [13].
  • Phosphotyrosine-protein-phosphatases and human reproduction: an association between low molecular weight acid phosphatase (ACP1) and spontaneous abortion [14].
  • The recombinant PTPase domain from Yersinia enterocolitica enhances the rate of hydrolysis of p-nitrophenyl phosphate, a phosphate monoester, by approximately 10(11) over the non-enzyme-catalyzed rate by water [15].
  • We report that the antitumor agent gallium nitrate is a potent inhibitor (concentration producing 50% inhibition, 2-6 microM) of detergent-solubilized cellular membrane PTPase from Jurkat human T-cell leukemia cells and HT-29 human colon cancer cells [16].
  • Here we show that insulin stimulation generates a burst of intracellular H(2)O(2) in insulin-sensitive hepatoma and adipose cells that is associated with reversible oxidative inhibition of up to 62% of overall cellular PTPase activity, as measured by a novel method using strictly anaerobic conditions [17].

Biological context of ACP1


Anatomical context of ACP1


Associations of ACP1 with chemical compounds


Physical interactions of ACP1

  • The full-length HPTP delta isoform has an extracellular region containing three Ig-like and eight FN-III-like domains connected via a transmembrane peptide to an intracellular region with two PTPase domains, whereas another isoform lacks four of the eight FN-III like domains [29].

Enzymatic interactions of ACP1

  • Insulin receptor kinase phosphorylates protein tyrosine phosphatase containing Src homology 2 regions and modulates its PTPase activity in vitro [30].
  • LAR was phosphorylated by insulin receptor tyrosine kinase and autodephosphorylated by the catalytic activity of the PTPase domain 1 [31].
  • Phosphotyrosyl phosphatases (PTPase) that dephosphorylate EGF-R and other proteins phosphorylated on tyrosine must also play an important role in controlling epidermal growth [32].

Regulatory relationships of ACP1

  • Because co-localization of both LFA-1 and TCR is an essential event during encounters of T cells with antigen-presenting cells and immunological synapse (IS) formation, we suggest an intriguing role of LMW-PTP in IS establishment and stabilization through the negative control of FAK activity and, in turn, of cell surface receptor redistribution [33].
  • A novel redox-based switch: LMW-PTP oxidation enhances Grb2 binding and leads to ERK activation [34].
  • Several cell lines derived from normal or tumor cells responsive to IGF-I were used to show that IGFBP-3-stimulated PTPase is cell type-specific [35].
  • Incubation of Jurkat cells with galectin-1 suppressed the immunoprecipitated PTPase activity of CD45 [36].
  • Sustained elevation of TNF-alpha inhibits the activity of PTPase which results in diminished expression of the MHC class I antigen on the cell surface and thus, malignant cells escape immune surveillance [37].

Other interactions of ACP1

  • In addition, the well-known A variant of ACP1, the Duarte variant of GALT, the 2 variant of Hp and the 2 variant of PGM1 occurred in polymorphic proportions in all three tribes, and the TFDChi variant was present as a polymorphism in the Baniwa [38].
  • Close linkage to FY and SS (GYPB) was excluded for all chosen phenotypic models and to ACP1 and ADA for broader phenotypic models [39].
  • In addition, ACP1 and GLO1 were reassigned to rat chromosomes 6 and 20, respectively [40].
  • Red cell acid phosphatase 1 (ACP1) is monomorphic while tissue acid phosphatase 2 (ACP2) is polymorphic in a wild rabbit population, with two alleles: ACP2*1 (0.96) and ACP2*2 (0.04) [41].
  • In total 934 individuals were investigated for AK1 and of these, 926 for PGM1 and 768 for ACP1 isozymes [42].

Analytical, diagnostic and therapeutic context of ACP1


  1. Interaction at clinical level between erythrocyte acid phosphatase and adenosine deaminase genetic polymorphisms. Gloria-Bottini, F., Lucarelli, P., Amante, A., Lucarini, N., Finocchi, G., Bottini, E. Hum. Genet. (1989) [Pubmed]
  2. A genetic epidemiologic investigation of breast cancer in families with bilateral breast cancer. II. Linkage analysis. Goldstein, A.M., Haile, R.W., Spence, M.A., Sparkes, R.S., Paganini-Hill, A. Clin. Genet. (1989) [Pubmed]
  3. Genetic polymorphism and TH1/TH2 orientation. Bottini, N., Gloria-Bottini, F., Amante, A., Saccucci, P., Bottini, E. Int. Arch. Allergy Immunol. (2005) [Pubmed]
  4. Type 2 diabetes and the genetics of signal transduction: a study of interaction between adenosine deaminase and acid phosphatase locus 1 polymorphisms. Bottini, N., Gloria-Bottini, F., Borgiani, P., Antonacci, E., Lucarelli, P., Bottini, E. Metab. Clin. Exp. (2004) [Pubmed]
  5. Enzyme polymorphism and clinical variability of diseases: a study of diabetes mellitus. Gloria-Bottini, F., Gerlini, G., Lucarini, N., Borgiani, P., Gori, M.C., Amante, A., Bottini, E. Hum. Biol. (1989) [Pubmed]
  6. Serum haptoglobin appearance during neonatal period is associated with acid phosphatase (ACP1) phenotype. Bottini, E., Carapella, E., Scacchi, R., Lucarini, N., Gloria-Bottini, F., Pascone, R., Bonci, E., Maggioni, G. Early Hum. Dev. (1985) [Pubmed]
  7. Association between the low molecular weight cytosolic acid phosphatase gene ACP1*A and comorbid features of Tourette syndrome. Bottini, N., MacMurray, J., Rostamkani, M., McGue, M., Iacono, W.G., Comings, D.E. Neurosci. Lett. (2002) [Pubmed]
  8. Linkage to Tourette syndrome is excluded for red-cell acid phosphatase (ACP1) and flanking markers on chromosome 2pter-2p23. Devor, E.J., Henderson, V., Sparkes, R.S. Hum. Biol. (1991) [Pubmed]
  9. Blood platelet heterogeneity: a functional hierarchy in the platelet population. Behnke, O. Br. J. Haematol. (1995) [Pubmed]
  10. The role of protein tyrosine kinases and protein tyrosine phosphatases in T cell antigen receptor signal transduction. Chan, A.C., Desai, D.M., Weiss, A. Annu. Rev. Immunol. (1994) [Pubmed]
  11. Crystal structure of Yersinia protein tyrosine phosphatase at 2.5 A and the complex with tungstate. Stuckey, J.A., Schubert, H.L., Fauman, E.B., Zhang, Z.Y., Dixon, J.E., Saper, M.A. Nature (1994) [Pubmed]
  12. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases. Shen, S.H., Bastien, L., Posner, B.I., Chrétien, P. Nature (1991) [Pubmed]
  13. Genetic control of serum IgE levels: a study of low molecular weight protein tyrosine phosphatase. Bottini, N., Otsu, A., Borgiani, P., Saccucci, P., Stefanini, L., Greco, E., Fontana, L., Hopkins, J.M., Mao, X.Q. Clin. Genet. (2003) [Pubmed]
  14. Phosphotyrosine-protein-phosphatases and human reproduction: an association between low molecular weight acid phosphatase (ACP1) and spontaneous abortion. Gloria-Bottini, F., Nicotra, M., Lucarini, N., Borgiani, P., La Torre, M., Amante, A., Gimelfarb, A., Bottini, E. Dis. Markers (1996) [Pubmed]
  15. Dissecting the catalytic mechanism of protein-tyrosine phosphatases. Zhang, Z.Y., Wang, Y., Dixon, J.E. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  16. Inhibition of protein tyrosine phosphatase by the antitumor agent gallium nitrate. Berggren, M.M., Burns, L.A., Abraham, R.T., Powis, G. Cancer Res. (1993) [Pubmed]
  17. Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. Mahadev, K., Zilbering, A., Zhu, L., Goldstein, B.J. J. Biol. Chem. (2001) [Pubmed]
  18. Sequencing, cloning, and expression of human red cell-type acid phosphatase, a cytoplasmic phosphotyrosyl protein phosphatase. Wo, Y.Y., McCormack, A.L., Shabanowitz, J., Hunt, D.F., Davis, J.P., Mitchell, G.L., Van Etten, R.L. J. Biol. Chem. (1992) [Pubmed]
  19. Human red cell acid phosphatase (ACP1). The amino acid sequence of the two isozymes Bf and Bs encoded by the ACP1*B allele. Dissing, J., Johnsen, A.H., Sensabaugh, G.F. J. Biol. Chem. (1991) [Pubmed]
  20. Evidence of selective interaction between adenosine deaminase and acid phosphatase polymorphisms in fetuses carried by diabetic women. Bottini, E., Gerlini, G., Lucarini, N., Amante, A., Gloria-Bottini, F. Hum. Genet. (1991) [Pubmed]
  21. Duplication of 2p25: confirmation of the assignment of soluble acid phosphatase (ACP1) locus to 2p25. Wakita, Y., Narahara, K., Takahashi, Y., Kikkawa, K., Kimura, S., Oda, M., Kimoto, H. Hum. Genet. (1985) [Pubmed]
  22. Erythrocyte acid phosphatase (ACP1) activity. In vitro modulation by adenosine and inosine and effects of adenosine deaminase (ADA) polymorphism. Lucarini, N., Borgiani, P., Ballarini, P., Bottini, E. Hum. Genet. (1989) [Pubmed]
  23. Cloning of a virulence factor of Entamoeba histolytica. Pathogenic strains possess a unique cysteine proteinase gene. Reed, S., Bouvier, J., Pollack, A.S., Engel, J.C., Brown, M., Hirata, K., Que, X., Eakin, A., Hagblom, P., Gillin, F. J. Clin. Invest. (1993) [Pubmed]
  24. The proopiocortin (adrenocorticotropin/beta-lipoprotein) gene is located on chromosome 2 in humans. Owerbach, D., Rutter, W.J., Roberts, J.L., Whitfeld, P., Shine, J., Seeburg, P.H., Shows, T.B. Somatic Cell Genet. (1981) [Pubmed]
  25. Beta-catenin interacts with low-molecular-weight protein tyrosine phosphatase leading to cadherin-mediated cell-cell adhesion increase. Taddei, M.L., Chiarugi, P., Cirri, P., Buricchi, F., Fiaschi, T., Giannoni, E., Talini, D., Cozzi, G., Formigli, L., Raugei, G., Ramponi, G. Cancer Res. (2002) [Pubmed]
  26. Simultaneous detection of ACP1 and GC genotypes using PCR/SSCP. Dissing, J., Thymann, M., Hopkinson, D. Ann. Hum. Genet. (2003) [Pubmed]
  27. Maternal cigarette smoking, metabolic enzyme polymorphism, and developmental events in the early stages of extrauterine life. Bottini, N., Gloria-Bottini, F., Magrini, A., Stefanini, L., Cosmi, E., Bergamaschi, A., Cosmi, E.V., Bottini, E. Hum. Biol. (2004) [Pubmed]
  28. Genetic markers among three population groups of Hungary. Goedde, H.W., Benkmann, H.G., Kriese, L., Bogdanski, P., Czeizel, A., Bères, J. Gene geography : a computerized bulletin on human gene frequencies. (1987) [Pubmed]
  29. Molecular characterization of the human transmembrane protein-tyrosine phosphatase delta. Evidence for tissue-specific expression of alternative human transmembrane protein-tyrosine phosphatase delta isoforms. Pulido, R., Krueger, N.X., Serra-Pagès, C., Saito, H., Streuli, M. J. Biol. Chem. (1995) [Pubmed]
  30. Insulin receptor kinase phosphorylates protein tyrosine phosphatase containing Src homology 2 regions and modulates its PTPase activity in vitro. Maegawa, H., Ugi, S., Adachi, M., Hinoda, Y., Kikkawa, R., Yachi, A., Shigeta, Y., Kashiwagi, A. Biochem. Biophys. Res. Commun. (1994) [Pubmed]
  31. Distinct functions of the two protein tyrosine phosphatase domains of LAR (leukocyte common antigen-related) on tyrosine dephosphorylation of insulin receptor. Tsujikawa, K., Kawakami, N., Uchino, Y., Ichijo, T., Furukawa, T., Saito, H., Yamamoto, H. Mol. Endocrinol. (2001) [Pubmed]
  32. Protein tyrosyl phosphatase-1B is expressed by normal human epidermis, keratinocytes, and A-431 cells and dephosphorylates substrates of the epidermal growth factor receptor. Gunaratne, P., Stoscheck, C., Gates, R.E., Li, L., Nanney, L.B., King, L.E. J. Invest. Dermatol. (1994) [Pubmed]
  33. Lymphocyte function-associated antigen-1-mediated T cell adhesion is impaired by low molecular weight phosphotyrosine phosphatase-dependent inhibition of FAK activity. Giannoni, E., Chiarugi, P., Cozzi, G., Magnelli, L., Taddei, M.L., Fiaschi, T., Buricchi, F., Raugei, G., Ramponi, G. J. Biol. Chem. (2003) [Pubmed]
  34. A novel redox-based switch: LMW-PTP oxidation enhances Grb2 binding and leads to ERK activation. Giannoni, E., Raugei, G., Chiarugi, P., Ramponi, G. Biochem. Biophys. Res. Commun. (2006) [Pubmed]
  35. Insulin-like growth factor-binding protein-3 activates a phosphotyrosine phosphatase. Effects on the insulin-like growth factor signaling pathway. Ricort, J.M., Binoux, M. J. Biol. Chem. (2002) [Pubmed]
  36. Galectin-1, a natural ligand for the receptor-type protein tyrosine phosphatase CD45. Walzel, H., Schulz, U., Neels, P., Brock, J. Immunol. Lett. (1999) [Pubmed]
  37. An immunological model connecting the pathogenesis of stress, depression and carcinoma. Holden, R.J., Pakula, I.S., Mooney, P.A. Med. Hypotheses (1998) [Pubmed]
  38. Electrophoretic variants in three Amerindian tribes: the Baniwa, Kanamari, and Central Pano of western Brazil. Mohrenweiser, H., Neel, J.V., Mestriner, M.A., Salzano, F.M., Migliazza, E., Simões, A.L., Yoshihara, C.M. Am. J. Phys. Anthropol. (1979) [Pubmed]
  39. Linkage analysis between manic-depressive illness and 35 classical markers. Ewald, H., Mors, O., Eiberg, H. Am. J. Med. Genet. (1994) [Pubmed]
  40. Chromosomal assignments of 23 biochemical loci of the rat by using rat x mouse somatic cell hybrids. Yasue, M., Serikawa, T., Yamada, J. Cytogenet. Cell Genet. (1991) [Pubmed]
  41. Genetic polymorphism of rabbit (Oryctolagus cuniculus) tissue acid phosphatases (ACP2 and ACP3). Branco, M., Ferrand, N. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. (1998) [Pubmed]
  42. Phosphoglucomutase, adenylate kinase and acid phosphatase polymorphism in some Jewish populations of Israel. Kobyliansky, E., Micl'e, S., Goldschmidt-Nathan, M., Arensburg, B., Nathan, H. Acta anthropogenetica. (1980) [Pubmed]
  43. Gene structure, sequence, and chromosomal localization of the human red cell-type low-molecular-weight acid phosphotyrosyl phosphatase gene, ACP1. Bryson, G.L., Massa, H., Trask, B.J., Van Etten, R.L. Genomics (1995) [Pubmed]
  44. Enzyme variability and neonatal jaundice. The role of adenosine deaminase and acid phosphatase. Lepore, A., Lucarini, N., Evangelista, M.A., Palombaro, G., Londrillo, A., Ballarini, P., Borgiani, P., Gloria-Bottini, F., Bottini, E. Journal of perinatal medicine. (1989) [Pubmed]
  45. Simultaneous phenotyping of ACP1, ADA and PGM1 by isoelectric focusing. Komatsu, N., Kido, A., Oya, M. Vox Sang. (1987) [Pubmed]
WikiGenes - Universities