Impaired cyclic nucleotide-mediated vasorelaxation may contribute to closure of the human umbilical artery after birth.
1. The mechanical and biochemical effects of agents that relax vascular smooth muscle either through elevation of guanosine 3':5'-cyclic monophosphate (cyclic GMP) or adenosine 3':5'-cyclic monophosphate (cyclic AMP) levels were compared in isolated ring preparations of human umbilical artery and rat aorta. Tone was established by preconstriction with 5-hydroxytryptamine. 2. The endothelium-dependent vasodilator calcium ionophore (A23187) (which stimulates endothelium-derived relaxing factor [EDRF] release and thus acts through soluble guanylyl cyclase), sodium nitroprusside (which stimulates soluble guanylyl cyclase directly), and atrial natriuretic peptide (which stimulates particulate guanylyl cyclase) relaxed rat aorta but not human umbilical artery. 3. Sodium nitroprusside, 10 microM, increased cyclic GMP levels from 10 to 390 pmol mg-1 protein at 2 min in rat aorta, as compared with a slower, relatively attenuated rise from 5 to 116 pmol mg-1 protein after 15 min in human umbilical artery. The rise in cyclic GMP in the umbilical artery was not significantly augmented by the cyclic GMP phosphodiesterase inhibitor, MB22948. Atrial natriuretic peptide increased cyclic GMP levels in rat aorta but not in human umbilical artery. 4. Forskolin, 10 microM, which stimulates both soluble and particulate adenylyl cyclase, maximally relaxed rat aorta and increased cyclic AMP levels from 15 to 379 pmol mg-1 protein at 15 min, but did not significantly relax or increase cyclic AMP levels in human umbilical artery. After preincubation with the cyclic nucleotide phosphodiesterase inhibitor, IBMX, 10 microM forskolin increased cyclic AMP levels to 1365 pmol mg-1 protein at 30 min in human umbilical arteries, but these high levels were not accompanied by mechanical relaxation.(ABSTRACT TRUNCATED AT 250 WORDS)[1]References
- Impaired cyclic nucleotide-mediated vasorelaxation may contribute to closure of the human umbilical artery after birth. Renowden, S., Edwards, D.H., Griffith, T.M. Br. J. Pharmacol. (1992) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg