The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Acute experimental esophagitis impairs signal transduction in cat lower esophageal sphincter circular muscle.

It has been previously shown that induction of experimental esophagitis in the cat by esophageal perfusion for 30 minutes with 0.1N HCl for 4 consecutive days results in a significant reduction of in vivo lower esophageal sphincter (LES) resting pressure and in vitro spontaneous tone without affecting esophageal response to KCl. It has also been shown that basal LES tone and LES contraction in response to acetylcholine depend on the release of calcium from intercellular stores, whereas esophageal contraction is mediated by extracellular calcium. The present report shows that esophageal acid perfusion impairs the transduction pathway mediating lower esophageal sphincter contraction in response to acetylcholine through release of intracellular calcium because LES strips and single cells no longer contract in response to acetylcholine if calcium is removed from the physiologic salt solution. This suggests that either the intracellular calcium stores or the release mechanisms that mediate maintenance of tone and contraction in response to acetylcholine may be damaged. However, the acid perfusion has no effect on the acetylcholine response in the esophagus, which is mediated by the influx of extracellular calcium. In the LES circular muscle, the injury results in reduced levels of inositol phosphates without affecting resting levels of 5'-cyclic adenosine monophosphate or 5'-cyclic guanosine monophosphate. The reduced levels of 1,4,5-inositol trisphosphate are consistent with impairment in the mechanisms responsible for release of intracellular calcium, although concurrent damage to calcium stores may also occur.[1]

References

  1. Acute experimental esophagitis impairs signal transduction in cat lower esophageal sphincter circular muscle. Biancani, P., Billett, G., Hillemeier, C., Nissensohn, M., Rhim, B.Y., Szewczak, S., Behar, J. Gastroenterology (1992) [Pubmed]
 
WikiGenes - Universities