The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Characterization of sodium-dependent amino acid transport activity during liver regeneration.

Liver regeneration occurs after removal of or damage to a portion of the liver; it leads to restoration of the original liver mass. The activities of three sodium-dependent amino acid transporters--system A, system N and system ASC--were determined during a 5-day period of liver regeneration in the rat. Seventy-percent hepatectomy or laparotomy was performed in pairs of rats; these rats' livers were removed at different time points after surgery. Transport activity was determined through measurement of the Na(+)-dependent uptake of tritiated amino acids by isolated hepatic plasma membrane vesicles. System A activity, as measured by the Na(+)-dependent uptake of 2-aminoisobutyric acid, is increased in the regenerating liver 2 to 24 hr after surgery compared with that of controls. Kinetic analysis of 2-(methylamino)isobutyric acid uptake showed a 100% increase in the maximum velocity of system A transport in the hepatectomized animals with no change in the Michaelis constant, suggesting an increase in the number of system A transport proteins in the plasma membrane of regenerating liver. During liver regeneration, no changes were noted in the transport activities of system N and system ASC as measured by the uptake of glutamine and cysteine, respectively, in the presence of 2-(methylamino)isobutyric acid. Our work suggests that system A performs a unique role in the secondary active transport of its substrate neutral amino acids to meet the metabolic demands of regenerating liver.[1]

References

  1. Characterization of sodium-dependent amino acid transport activity during liver regeneration. Fowler, F.C., Banks, R.K., Mailliard, M.E. Hepatology (1992) [Pubmed]
 
WikiGenes - Universities