The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

AP-1 (Fos-Jun) regulation by IP-1: effect of signal transduction pathways and cell growth.

Transcription factor AP-1 is constituted by the various products of the fos and jun proto-oncogene family members, which associate as dimers to bind with variable efficiency to 12-O-tetradecanoyl phorbol 13-acetate (TPA)-responsive promoter elements (TREs). We have recently shown that DNA binding of AP-1 is regulated by an inhibitory protein, IP-1, whose activity is modulated by phosphorylation. Here it is shown that although AP-1 has a very high affinity for its recognition sequence, its binding to the TRE can be quickly inhibited by the addition of IP-1. IP-1 is more active on AP-1 complexes formed during a shorter period of time. IP-1 activity is blocked by stimulation of the protein kinase C (PKC) signal transduction pathway, achieved by treating HeLa cells with phorbol esters or with a diacylglycerol analog. We observed an increase in AP-1-DNA binding after treatment of the cells with either the calcium ionophore A-23187 or dibutyryl cAMP; this could be ascribed to inhibition of IP-1 activity. A decreased IP-1 activity also correlates with the increase in AP-1-DNA binding after stimulating cells with serum. This suggests that IP-1 is an important target of the various signal transduction pathways. No effect on AP-1 and IP-1 was detected in cells transformed by Ki-ras or v-raf; nor could an effect of inhibition of protein synthesis be observed. We also analysed IP-1 regulation upon differentiation of P19 embryonal carcinoma cells by retinoic acid. We conclude that IP-1 regulation has a pivotal role in the final modulation of Fos-Jun by signal transduction pathways.[1]

References

 
WikiGenes - Universities